• Title/Summary/Keyword: Radiation Measurement

Search Result 1,802, Processing Time 0.03 seconds

Wall Thickness Measurement of Respiratory Airway in CT Images: Signal Processing Aspects

  • Park, Sang-Joon;Kim, Jong-Hyo;Kim, Kwang-Gi;Lee, Sang-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.279-280
    • /
    • 2007
  • Airway wall thickness is an important bio-marker for evaluation of pulmonary diseases such as stenosis, bronchiectasis. Nevertheless, an image-based analysis of the airway tree can provide precise and valuable airway size information, quantitative measurement of airway wall thickness in CT images involves various sources of error and uncertainty. So we have developed an accurate airway wall measurement technique for small airways with three-dimensional (3-D) approach. To illustrate performance of these techniques, we used airway phantom that consisted of 4 acryl tubes with various inner and outer diameters. Results show that evaluation of interpolation and deconvolution methods of airways in 3-D CT images, and significant improvement over the full-width-half-maximum method for measurement of not only location of the luminal and outer edge of the airway wall but airway wall thickness.

  • PDF

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Radiation Measurement of a Operational CANDU Reactor Fuel Handling Machine using Semiconductor Sensors (ICCAS 2003)

  • Lee, Nam-Ho;Kim, Seung-Ho;Kim, Yang-Mo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1220-1224
    • /
    • 2003
  • In this paper, we measured the radiation dose of a fuel handling machine of the CANDU type Wolsong nuclear reactor directly during operation, in spite of the high radiation level. In this paper we will describe the sensor development, measurement techniques, and results of our study. For this study, we used specially developed semiconductor sensors and matching dosimetry techniques for the mixed radiation field. MOSFET dosimeters with a thin oxide, that are tuned to a high dose, were used to measure the ionizing radiation dose. Silicon diode dosimeters with an optimum area to thickness ratio were used for the radiation damage measurements. The sensors are able to distinguish neutrons from gamma/X-rays. To measure the radiation dose, electronic sensor modules were installed on two locations of the fuel handling machine. The measurements were performed throughout one reactor maintenance cycle. The resultant annual cumulative dose of gamma/X-rays on the two spots of the fuel handling machine were 18.47 Mrad and 76.50 Mrad, and those of the neutrons were 17.51 krad and 60.67 krad. The measured radiation level is high enough to degrade certain cable insulation materials that may result in electrical insulation failure.

  • PDF

Evaluation and Analysis of Scattered Radiation Dose according to Factors in General X-ray Examination (일반엑스선영상검사의 인자에 따른 산란방사선량 평가 및 분석)

  • Dong-Kyung Jung;Myeong-Hwan Park;Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Control of scattered radiation is one of very important factors in the use of medical radiation. In general X-ray exam, the causes, measurement methods, and the kind of detectors of scattered rays within the radiation area are diverse. In this study, the dose of scattered ray was measured by changing the thickness of the polycarbonate phantom and the tube voltage. As a result of measurement of scattered radiation, the results show that the scattered dose significantly(p<.05) increased with growing of thickness of phantom in the tube voltage 40, 50 and 60 kVp(F(p)<.05, R2>64%). As tube voltage increased at all phantom thicknesses, the scattered dose also significantly(p<.05) increased(F(p)<.05, R2>69%). In cases where a significant correlation was shown, the coefficient of determination of more than 60% was shown in regression analysis. The results of this study can be used as data on scattered radiation dose according to the tube voltage and the object thickness in general X-ray imaging exam.

The Real-Time Temporal and Spatial Diagnostics of Ultrashort High-Power Laser Pulses using an All-Reflective Single-Shot Autocorrelator

  • Kim, Ha-Na;Park, Seong Hee;Kim, Kyung Nam;Han, Byungheon;Shin, Jae Sung;Lee, Kitae;Cha, Yong-Ho;Jang, Kyu-Ha;Jeon, Min Yong;Miginsky, Sergei V.;Jeong, Young Uk;Vinokurov, Nikolay A.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.382-387
    • /
    • 2014
  • An all-reflective, simple noncollinear second harmonic (SH) autocorrelator is described for monitoring the shot-to-shot behavior of ultrashort high-power laser pulses. Two mirrors are used for the dispersion-free splitting of a pulse into two halves. One of the mirrors is able to adjust the delay time and angle between two halves of the laser pulse in a nonlinear crystal. We present the possibility of real-time measurement of the pulse duration, peak intensity (or energy), and the pointing jitters of a laser pulse, by analyzing the spatial profile of the SH autocorrelation signal measured by a CCD camera. The measurement of the shot-to-shot variation of those parameters will be important for the detailed characterization of laser accelerated electrons or protons.

Development of Measurement System for Industrial Transportable Gamma Ray CT (이동 형 산업용 단층측정 장치를 위한 감마선 검출시스템 개발)

  • Kim, Jong-Bum;Jung, Sung-Hee;Moon, Jin-Ho
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.231-237
    • /
    • 2012
  • This paper introduces a gamma-ray measurement system for a transportable tomography which is applicable for an industrial process diagnosis. The gamma-ray measurement system consists of pulse mode operating 72 channel CsI detectors, main AMP-pulse shaper, single channel analyzer, counter and control PC. The CsI crystal is coupled with a PIN diode which is connected to an amplifier and pulse shaper. For a compact design, the amplifier and pulse shaping circuit are included in a single package. 36 sets of CsI detectors are connected to a multi-channel counter through single channel analyzers. A computer controls and collects data from two multi-channel counters. This configuration results in 72 channel counting system in total. The CT rotator and radiation measurement system are controlled by a PC with LabVIEW program. Tomographic data were measured for a phantom by the measurement system and transportable gamma-ray CT. From the experimental data image reconstructions were performed by ML-EM algorithm. The result showed that the CsI detector system can be a suitable component for transportable gamma-ray CT system.

Investigation on the techniques of quality control for radiation counting systems (방사선 측정기의 품질관리 기법에 대한 고찰)

  • Song, Byoung-Chul;Kim, Young-Bok;Han, Sun-Ho;Oh, Se-Jin;Lee, Myung-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.414-420
    • /
    • 2011
  • In this study, radiation measurement system has been investigated to set up for the radioisotopes analysis in the radioactive waste samples after selecting the radiation counters of alpha beta and gamma nuclides. The counting efficiencies for alpha, beta and gamma measurement systems were calibrated. To obtain stability of the radiation detectors, quality control program has been established. Also, minimum detectable activities (MDAs) depending on the type of samples were calculated for increasing the confidence level for analytical result.

EXPERIMENTAL STUDY ON MEASUREMENT OF EMISSIVITY FOR ANALYSIS OF SNU-RCCS

  • CHO YUN-JE;KIM MOON OH;PARK GOON-CHERL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2006
  • SNU-RCCS is a water pool type RCCS (Reactor Cavity Cooling System) developed for VHTR (Very High Temperature Reactor) application by SNU (Seoul National University). Since radiation heat transfer is the major process of passive heat removal in a RCCS, it is important to determine the precise emissivity of the reactor vessel. Review studies have used a constant emissivity in the passive heat removal analysis, even though the emissivity depends on many factors such as temperature, surface roughness, oxidation level, wavelength, direction, atmosphere conditions, etc. Therefore, information on the emissivity of a given material in a real RCCS is essential in order to properly analyze the radiation heat transfer in a VHTR. The objectives of this study are to develop a method for compensation of the factors affecting the emissivity measurement using an infrared thermometer and to estimate the true emissivity from the measured emissivity via the developed method, especially in the SNU-RCCS environment. From this viewpoint, we investigated factors such as the attenuation effect of the window, filling gas, and the effect of background radiation on the emissivity measurements. The emissivity of the vessel surface of the SNU-RCCS facility was then measured using a sight tube. The background radiation was subsequently removed from the measured emissivity by solving a simultaneous equation. Finally, the calculated emissivity was compared with the measured emissivity in a separate emissivity measurement device, yielding good agreement with the emissivity increase with vessel temperature in a range of 0.82 to 0.88.

Measurement and Analysis of X-ray Absorbed Dose in Water Phantom using TLD (TLD를 이용한 X-선 수중 흡수선량 측정 및 해석)

  • Oh, Jang-Jin;Jun, Jae-Shik;Hah, Suck-Ho;Kim, Wuon-Shik;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.21-28
    • /
    • 1988
  • Absorbed dose in water was analyzed by Burlin's general cavity theory for medium X-ray energy region (HVL : 0.29, 0.84, 1.60, 2.62mm Cu) using LiF : PTFE TL dosimeter(0.4 mm ${\times}\;{\phi}$ 12.5mm, hot-pressed LiF TLD-700) which was enclosed in lucite capsule. The absorbed dose rate at 5cm depth in water phantom was determined with measurement error of ${\pm}5%$. This result was compared to that of the ionization method, indirectly absolute measurement method, of which measurement error of ${\pm}2%$. The difference between these two results lies within measurement error of LiF : PTFE method. Therefore, the absorbed dose in water obtained by LiF: PTFE is reliable, and this result suggests the base to estimate dose-equivalent for medium X-rays.

  • PDF

Development of Mixed Sensor Parts for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 혼합형 센서부 개발)

  • Kim, Jae-Hyeong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1457-1460
    • /
    • 2019
  • In this paper, we proposed the development of a mixed sensor parts for integrated radiation exposure protection fireman's life-saving alarm that can be location-tracked and irradiated. To measure radiation exposure dose, we use the PIN-Diode radiation measurement sensor module, a semi-conductive radiation measurement sensor that can minimize size and weight. The design for removing leakage current is carried out to enhance the characteristics of the radiation measurement sensor using PIN-Diode. The IMU sensor module is used to estimate the location of the current fireman at the same time as the accident estimate by adding together the data and the values for acceleration on the three axis. Experiments were conductied by an authorized testing agency to determine the efficiency of the proposed mixed sensor parts for integrated radiation exposure protection fireman's life-saving alarms. The cumulative dose measurement range was measured in the range of 10 μSv to 10 mSv, the highest level in the world. The accuracy was measured from ±6.3% to ±9.0% (137 Cs) and normal operation was found at the international standard of ±15%. In addition, positional accuracy was measured within ±10%, resulting in a high level of results, demonstrating its effectiveness. Therefore, it is expected that more firemen will be able to provide with superior performance integrated radiation exposure protection fireman life-saving alarm.