• 제목/요약/키워드: Radiation Imaging

검색결과 1,198건 처리시간 0.024초

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

Reduction of Radiation Exposure by Modifying Imaging Manner and Fluoroscopic Settings during Percutaneous Pedicle Screw Insertion

  • Kim, Hyun Jun;Park, Eun Soo;Lee, Sang Ho;Park, Chan Hong;Chung, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권6호
    • /
    • pp.933-943
    • /
    • 2021
  • Objective : Percutaneous pedicle screw (PPS) fixation is a needle based procedure that requires fluoroscopic image guidance. Consequently, radiation exposure is inevitable for patients, surgeons, and operation room staff. We hypothesize that reducing the production of radiation emission will result in reduced radiation exposure for everyone in the operation room. Research was performed to evaluate reduction of radiation exposure by modifying imaging manner and mode of radiation source. Methods : A total of 170 patients (680 screws) who underwent fusion surgery with PPS fixation from September 2019 to March 2020 were analyzed in this study. Personal dosimeters (Polimaster Ltd.) were worn at the collar outside a lead apron to measure radiation exposure. Patients were assigned to four groups based on imaging manner of fluoroscopy and radiation modification (pulse mode with reduced dose) : continuous use without radiation modification (group 1, n=34), intermittent use without radiation modification (group 2, n=54), continuous use with radiation modification (group 3, n=26), and intermittent use with radiation modification (group 4, n=56). Post hoc Tukey Honest significant difference test was used for individual comparisons of radiation exposure/screw and fluoroscopic time/screw. Results : The average radiation exposure/screw was 71.45±45.75 µSv/screw for group 1, 18.77±11.51 µSv/screw for group 2, 19.58±7.00 µSv/screw for group 3, and 4.26±2.89 µSv/screw for group 4. By changing imaging manner from continuous multiple shot to intermittent single shot, 73.7% radiation reduction was achieved in the no radiation modification groups (groups 1, 2), and 78.2% radiation reduction was achieved in the radiation modification groups (groups 3, 4). Radiation source modification from continuous mode with standard dose to pulse mode with reduced dose resulted in 72.6% radiation reduction in continuous imaging groups (groups 1, 3) and 77.3% radiation reduction in intermittent imaging groups (groups 2, 4). The average radiation exposure/screw was reduced 94.1% by changing imaging manner and modifying radiation source from continuous imaging with standard fluoroscopy setting (group 1) to intermittent imaging with modified fluoroscopy setting (group 4). A total of 680 screws were reviewed postoperatively, and 99.3% (675) were evaluated as pedicle breach grade 0 (<2 mm). Conclusion : The average radiation exposure/screw for a spinal surgeon can be reduced 94.1% by changing imaging manner and modifying radiation source from real-time imaging with standard dose to intermittent imaging with modified dose. These modifications can be instantly applied to any procedure using fluoroscopic guidance and may reduce the overall radiation exposure of spine surgeons.

A New Radiation-Shielding Device for Restraining Veterinary Patients

  • Songyi Kim;Minju Lee;Miju Oh;Yooyoung Lee;Jiyoung Ban;Jiwoon Park;Sojin Kim;Uhjin Kim;Jaepung Han;Dongwoo Chang
    • 한국임상수의학회지
    • /
    • 제40권6호
    • /
    • pp.429-437
    • /
    • 2023
  • In veterinary medicine, most radiographic images are obtained by restraining patients, inevitably exposing the restrainer to secondary scattered radiation. Radiation exposure can result in stochastic reactions such as cancer and genetic effects, as well as deterministic reactions such as skin burns, cataracts, and bone marrow suppression. Radiation-shielding equipment, including aprons, thyroid shields, eyewear, and gloves, can reduce radiation exposure. However, the risk of radiation exposure to the upper arms, face, and back remains, and lead aprons and thyroid shields are heavy, restricting movement. We designed a new radiation-shielding system and compared its shielding ability with those of conventional radiation-shielding systems. We hypothesized that the new shielding system would have a wider radiation-shielding range and similar shielding ability. The radiation exposure dose differed significantly between the conventional and new shielding systems in the forehead, chin, and bilateral upper arm areas (p < 0.001). When both systems were used together, the radiation-shielding ability was better than when only one system was used at all anatomical locations (p < 0.01). This study suggests that the new radiation-shielding system is essential and convenient for veterinary radiation workers because it is a step closer to radiation safety in veterinary radiography.

Evaluation of a Curtain-Type Radiation Protection Device for Veterinary Interventional Procedures

  • Minsik Choi;Jaepung Han;Changgyu Lim;Jiwoon Park;Sojin Kim;Uhjin Kim;Jinhwa Chang;Dongwoo Chang;Namsoon Lee
    • 한국임상수의학회지
    • /
    • 제41권3호
    • /
    • pp.157-164
    • /
    • 2024
  • The standard radiation protection method in the angiography suite involves the use of a thyroid shield, a lead apron, and lead glasses. However, exposure to substantial amounts of ionizing radiation can cause cataracts, tumors, and skin erythema. A newly developed curtain-type radiation protection device consists of a curtain drape composed of a five-layer bismuth and lead acrylic head-shielding plate, with both bearing an equivalent 0.25 mm lead thickness. In this study, a quality assurance phantom was used as the patient to create radiation scatter from the radiographic source, and an anthropomorphic mannequin phantom was used as the interventionalist to measure the radiation dose at seven different anatomical locations. Thermoluminescent dosimeters were used to measure the radiation dose. The experimental groups consisted of all-sided or one-sided curtain set-ups, the presence or absence of a conventional shielding system, and the orientation of beam irradiation. Consequently, the curtain-type radiation protection device exhibited better radiation protection range and capabilities than conventional radiation protection systems, especially in safeguarding the forehead, eyes, arms, and feet, with minimal radiation exposure. Moreover, the mean shielding ratios of the conventional shielding system and curtain-type radiation protection device were measured at 51.94% and 93.86%, respectively. Additionally, no significant decrease in the radiation protection range or capability was observed, even with changes in the beam orientation or one-sided protection. Compared with a conventional shielding system, the curtain-type radiation protection device decreased radiation exposure doses and improved comfort. Therefore, it is a potential new radiation protection device for veterinary interventional procedures.

마이크로웨이브 플라즈마 처리를 통한 섬광체 패널 기판의 접촉가 특성변화 (Characteristics of the Contact Angle Using the Microwave Plasma Treatment on Scintillator Panel Substrates)

  • 김병욱;김영주;유철우;최병정;권영만;이영춘;김명수;조규성
    • 방사선산업학회지
    • /
    • 제8권1호
    • /
    • pp.43-47
    • /
    • 2014
  • By measuring decrease change of the contact angle after microwave plasma treatment on the glass and Al as a scintillator panel sample substrate, the adhesive performance of scintillator panel can be expected to improve. Also resolution and sensitivity of scintillator panel after microwave plasma treatment can be expected to maintain highly.

THE EFFECT OF SURFACE ROUGHNESS OF CSI(TL) MICRO-COLUMNS ON THE RESOLUTION OF THE X-RAY IMAGE; OPTICAL SIMULATION STUDY

  • Kim, Hyun-Ki;Bae, Jun-Hyung;Cha, Bo-Kyung;Jeon, Ho-Sang;Kim, Jong-Yul;Kim, Chan-Kyu;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • 제34권1호
    • /
    • pp.25-30
    • /
    • 2009
  • Micro-columnar CsI(Tl) is the most popular scintillator material which is used for many indirect digital X-ray imaging detectors. The light scattering at the surface of micro-columnar CsI(Tl) scintillator was studied to find the correlation between the surface roughness and the resultant image resolution of indirect X-ray imaging detectors. Using a commercially available optical simulation program, Light Tools, MTF (Modulation Transfer Function) curves of the CsI(Tl) film thermally evaporated on glass substrate with different thickness were calculated and compared with the experimental estimation of MTF values by the edge X-ray image method and CCD camera. It was found that the standard deviation value of Gaussian scattering model which is determined by the surface roughness of micro-columns could certainly change the MTF value of image sensors. This model and calculation methodology will be beneficial to estimate the overall performance of indirect X-ray imaging system with CsI(Tl) scintillator film for optimum design depending on its application.

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

Radiation Recall Pneumonitis: Imaging Appearance and Differential Considerations

  • Nahyun Celina Jo;Girish S. Shroff;Jitesh Ahuja;Rishi Agrawal;Melissa C. Price;Carol C. Wu
    • Korean Journal of Radiology
    • /
    • 제25권9호
    • /
    • pp.843-850
    • /
    • 2024
  • Radiation recall pneumonitis is an inflammatory reaction of previously radiated lung parenchyma triggered by systemic pharmacological agents (such as chemotherapy and immunotherapy) or vaccination. Patients present with non-specific symptoms such as cough, shortness of breath, or hypoxia soon after the initiation of medication or vaccination. Careful assessment of the patient's history, including the thoracic radiation treatment plan and timing of the initiation of the triggering agent, in conjunction with CT findings, contribute to the diagnosis. Once a diagnosis is established, treatment includes cessation of the causative medication and/or initiation of steroid therapy. Differentiating this relatively rare entity from other common post-therapeutic complications in oncology patients, such as recurrent malignancy, infection, or medication-induced pneumonitis, is essential for guiding downstream clinical management.

동물병원 방사선 안전관리체계에 대한 연구 (Study of Radiation Safety Management of Veterinary Hospital in Korea)

  • 채수영;최호정;이영원
    • 한국임상수의학회지
    • /
    • 제37권1호
    • /
    • pp.15-22
    • /
    • 2020
  • This study investigated the effectiveness of radiation safety rules in animal hospital and the awareness and behavior of veterinary radiation workers. With the questionnaires, the data was collected from randomly selected veterinarians in animal hospitals and animal medical imaging centers. Collected data were about radiation device, shielding device, regulations, safety management, education, knowledge, behavior and awareness. Frequency, correlation and multiple regression analysis were performed. The medical devices related with radiation in animal hospital were X-ray (59%), CT (15%), fluoroscopy (12%), mobile X-ray (12%) and others (2%). The number of people using radiation shielding device is high. The answers were low on knowing radiation related regulation and receiving radiation protection education. The group with higher knowledge and awareness shows positive correlation with safety behavior. The increase of use of the radiation related medical devices in veterinary hospital causes the increase of radiation exposure risk. This study suggests that radiation safety management system and policies need to be developed to protect radiation workers and give them correct information and consciousness.

방사선 내부흡수선량의 의학적 적용 (Medical Application of Radiation Internal Dosimetry)

  • 김경민;임상무
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.164-171
    • /
    • 2008
  • Medical internal radiation dosimetry (MIRD) is an important part of nuclear medicine research field using therapeutic radioisotope. There have been many researches using MIRD for the development of new therapeutic approaches including radiopharmaceutical, clinical protocol, and imaging techniques. Recently, radionuclide therapy has been re-focused as new solution of intractable diseases, through to the advances of previous achievements. In this article, the basic concepts of radiation and internal radiation dosimetry are summarized to help understanding MIRD and its application to clinical application.