• Title/Summary/Keyword: Radiation Heat Shield

Search Result 37, Processing Time 0.024 seconds

Heat Transfer Analysis of the Radiation Shield in Cryogenic Systems (극저온 시스템의 복사쉴드의 열전달 해석)

  • 정은수;장호명;박희찬;양형석
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.124-128
    • /
    • 2002
  • A numerical model to obtain the temperature distribution in a radiation shield of cryogenic systems was proposed. Conformal mapping was used to transform the eccentric physical region of the upper plate to the concentric numerical region. The effects of the thickness of the radiation shield, the emissivities of the vacuum chamber and the radiation shield, and the eccentricity between the centers of the upper plate and the contact area with a cryocooler on the maximum temperature difference in a radiation shield were shown.

A Study on the Thermal and Flow Characteristics of Wind and Radiant Heat Shield for Offshore by using Mesh Screen (메쉬 스크린을 적용한 해양구조물용 방풍 및 복사열 차단막 열유동특성에 관한 연구)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2012
  • This study is about comparison of thermal and flow characteristics on the wind & radiant heat shield with STS mesh type screen for offshore. Numerical analysis was conducted to find transmission coefficient in the mesh and then analyse the flow characteristics about wind & radiant heat shield. The experiment method of solar radiation has been used as thermal radiation source to get the performance of radiant heat shield measurement. The sensor radiation device has been used to measure the reduction of solar radiation with various size of cells and at a distance of 0.5m and 1m from the cold face of the wind & radiant heat shield.

Heat Transfer Analysis of the Radiation Shield in Cryogenic Systems (극저온 시스템의 복사쉴드의 열전달 해석)

  • 정은수;박희찬;양형석;장호명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.177-180
    • /
    • 2002
  • A numerical model to obtain the temperature distribution in a radiation shield of cryogenic systems was proposed. Conformal mapping was used to transform the eccentric physical region of the upper plate to the concentric numerical region. The effects of the thickness of the radiation shield, the emissivities of the vacuum chamber and the radiation shield, and the eccentricity between the centers of the upper plate and the contact area with a cryocooler on the maximum temperature difference in a radiation shield were shown.

  • PDF

Development of Radiation Heat Shield of Monopropellant Thruster for Spacecraft (우주비행체 단일추진제 추력기의 복사 열차폐막 개발)

  • 이균호;유명종;최준민;김수겸
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.92-98
    • /
    • 2006
  • An 1 lbf of NASA standard monopropellant thruster, MRE-1, is used for KOMPSAT (Korea Multi-Purpose Satellite) which is launched in 2006 and provides reliable and cost-effective means for attitude and maneuvering control system. The monopropellant thruster obtains required thrust by thermal decomposition process of propellant through catalyst bed. During firing, the decomposition plays a role of a heat source that may occur an excessive radiation heat transfer to peripheral structures and electronics in relatively low temperature condition.Therefore, the radiation heat shield is needed to prevent the critical radiative heat exchange between thruster and satellite during firing. This paper summarizes an overall development process of radiation heat shield from the design engineering up to the manufacturing.

Study on Performance of Radiant Heat Shields for Offshore Installations (해양플랜트 복사열 차폐막의 차폐성능에 관한 연구)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.330-339
    • /
    • 2019
  • Radiant heat shields are normally installed on offshore oil and gas platforms to protect personnel, equipment, and structures from the thermal radiation emitted by a flare system. A heat shield should be individually designed to reduce the thermal radiation to the target level, and then manufactured and installed after the performance verification. However, in general, a heat shield is designed and manufactured by trial and error based on the performance test. For this reason, it is difficult to develop and design radiant heat shields in the Korean shipbuilding and marine equipment industry because of the lack of performance test data and limited experience. In the present study, the results of experiments conducted to verify the performances of radiant heat shields were analyzed, and the thermal radiation characteristics and performance characteristics of the radiant heat shields were investigated. The insights and conclusions developed in the present study will be useful in terms of the design and development of radiant heat shield, as well as in their performance verification tests.

An Experimental Study on the Effects of a Radiation Shield on the Thermal Load of a Cryochamber (복사 차폐막이 극저온 용기의 부하에 미치는 영향에 관한 실험적 연극)

  • Kim, Young-Min;Park, Seong-Je;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.365-370
    • /
    • 2005
  • Infrared (lR) detectors are widely used for such applications as thermoelstic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Cryochamber considers the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector Cryochamber with radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation. It is found that the thermal load can be substantially reduced by increasing the number of radiation shield.

  • PDF

Thermal Analysis of a Cryochamber for an Infrared Detector Considering a Radiation Shield (적외선 검출기용 극저온 챔버에서 복사 차폐막을 고려한 열해석)

  • Kim Young-Min;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.672-677
    • /
    • 2006
  • The steady cooling characteristics of a cryochamber for infrared (IR) detector have been investigated analytically, considering radiation shields. The thermal modeling considers the conduction heat transfer through cold finger, the gaseous conduction due to out-gassing, and the radiation heat transfer. The cooling load of the cryochamber is obtained by using a fin equation. The results obtained indicate that the gaseous conduction plays an important role in determining the steady cooling load. The steady cooling load is increased as the gas pressure is increased. It is also found that the cooling load is substantially decreased with a radiation shield. The most thermal load of a cryochamber occurs through the cold finger.

Design Optimization of Thermal Radiation Shield Cooled by Cryocooler (냉동기에 의해 냉각되는 복사열차폐 최적설계)

  • Choi, Y.S.;Tang, Hongming;Kim, D.L.;Yang, H.S.;Lee, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2171-2174
    • /
    • 2008
  • The design of thermal radiation shield cooled by a cryocooler is presented. This study is motivated mainly by our recent development of prototype superconducting magnet system for the Cyclotron K120. The superconducting magnet system is composed of the magnet cryostat, transfer line and supply cryostat. In order to minimize thermal radiation load, the superconducting coil form in the magnet cryostat is enclosed by the thermal radiation shield which is thermally connected to the first-stage cold head of a two-stage cryocooler in the supply cryostat. Since the supply cryostat is located far from the magnet cryostat large temperature gradient along the thermal shield is unavoidable. In this paper, the thermal radiation shield is optimized to minimize temperature gradient with taking into account the cryogenic load, system structure and electrical load. The effect of heat source from thermal conduction through mechanical supports on the temperature distribution of thermal radiation shield is also discussed.

  • PDF

ABLATING AND CHARRING OF TWO DIMENSIONAL HEAT SHIELD MATERIALS

  • Shabani Mohammad Reza;Rahimian Mohammad Hassan
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2005
  • The objective of this research is to estimate two dimensional ablating and charring of heat shield materials in severe aero-thermal heat transfer. This estimation requires an accurate and rapid technique for its serious heat transfer with a moving boundary. Aerodynamic heating is obtained by an explicit relation which is a function of Mach number and air condition, while a fully implicit method is used for heat transfer calculations. Moving boundary is captured by FLIAR method which is a subgroup of VOF. Thickness of ablating and charring of heat shield, temperature of the moving surface and rate of radiation heat are calculated and compared with references. The results are in good agreement with other calculations.

An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields (복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구)

  • Kim, Young-Min;Kang, Byung-Ha;Park, Seong-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.