• Title/Summary/Keyword: Radiation Dosimeters

Search Result 164, Processing Time 0.023 seconds

Dose metrology: TLD/OSL dose accuracy and energy response performance

  • Omaima Essaad Belhaj;Hamid Boukhal;El Mahjoub Chakir;Meryeme Bellahsaouia;Siham Belhaj;Younes Sadeq;Mohammed Tazi;Tahar El Khoukhi;Maryam Hadouachi;Khaoula Laazouzi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.717-724
    • /
    • 2023
  • An essential step in evaluating and comparing the performance of two passive radiation dosimeter types, thermosluminescent (TLD) and optically stimulated luminescence (OSL), used by workers in environments with ionizing radiation for individual radiological monitoring and control of external exposure at various times (cumulative dose for 1 month), is to compare the measured dose accuracy, energy response, and coefficient of variation. In fact this performance study consists in determining the accuracy of both R(10) and R(0.07) which are considered as the ratios of the measured dose (Hp(10) or Hp(0.07)) to the delivered dose (Hp(10) or Hp(0.07)) for each photon energy. The validity of the results of this test is based on the acceptance limits of the ICRP and the international standard IEC-62387. The relative energy response used is normalized to the 137Cs 662 keV energy to find which energy response is closest to the ideal case, and the coefficient of variation that allows to determine the statistical fluctuation of the Hp(10) and Hp(0.07) doses. The results of the accuracy test for the OSL and TLD dosimeters are acceptable because they fall within the ICRP limits. For the energy response, the OSL performs better than the TLD for Hp(10) and Hp(0.07), and for the coefficient of variation, the OSL satisfies the requirements of ISO 62387 for both Hp(10) and Hp(0.07), while the TLD satisfies these requirements only for the measurement of Hp (0.07).

Occupational Radiation Exposure in Korea: 2002 (2002년 국내 방사선 작업종사자의 직업군별 피폭선량)

  • Jeong, Je-Ho;Kwon, Jeong-Wan;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.175-183
    • /
    • 2005
  • Dose distribution of Korean radiation workers classified by occupational categories was analyzed. Statistics of the occupational radiation exposure(ORE) in 2002 of the radiation workers in diagnostic and dental radiology were obtained from the Korea Food and Drug Agency(KFDA) who maintains the database for individual radiation dose records. Corresponding statistics for the rest of radiation workers were obtained by processing the individual annual doses provided by the Korea Radioisotope Association(KRIA) after deletion of individual information. The ORE distribution was classified in term of 28 occupational categories, annual individual dose levels, age groups and gender of 52733 radiation workers as of the year of 2002. The total collective dose was 66.4 man-Sv and resulting average individual ORE was 1.26 mSv. Around 80% of the workers were exposed to minimal doses less than 1.2 mSv. However, it appeared that the recorded doses exceeded 20 mSv for 43 workers in the industrial radiography and for 147 workers in the field of radiology. Particularly, recorded doses of 23 workers in radiology exceeded the annual dose limits of 50 mSv, which is extraordinary when the working environment is considered. It is uncertain whether those doses are real or caused by careless placing of dosimeters in the imaging rooms while the X-ray units are in operation. No one in the workforce of 16 operating nuclear power plant units was exposed over 20 mSv in 2002. Number of workers was the largest in their 30's of age and the mean individual dose was the highest in their 20's. Women were around 20% of the radiation workers and their average dose was around one half of that of man workers.

Absorbed Doses in Organs of the Head and Neck from Conventional Temporomandibular Joint Tomography (악관절 단층촬영시의 두경부 주요 기관의 흡수선량)

  • Cho Bong-Hae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.411-416
    • /
    • 1999
  • Purpose : This study was done to evaluate the absorbed doses in organs of the head and neck for the conventional temporomandibular joint tomography. Materials and Methods : Dosimetry was performed with 32 LiF thermoluminescent dosimeters, which were placed in a tissue-equivalent phantom when the temporomandibular joint was examined by both lateral and frontal temporomandibular joint tomography. Results : For lateral tomography, parotid gland and preauricular area towards tube showed relatively high absorbed dose of 1056.9 μGy and 519.9 μGy respectively. For frontal tomography, the two largest absorbed doses were 259.2 μGy in orbit towards tube and 212.0 μGy in lens towards tube. Conclusion : Conventional temporomandibular joint tomography showed relatively low absorbed doses on critical organs. Thus, responsible use of it may not be limited.

  • PDF

A Study on the Development of Electronic Personal Dosimeter with Silicon PIN Photodiode (실리콘 핀 포토다이오드를 이용한 전자 선량계의 설계 및 구현)

  • Yi, Un-Kun;Kwon, Seok-Geon;Kim, Jung-Seon;Sohn, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2285-2288
    • /
    • 2002
  • Recently, electronic personal dosimeters based upon silicon PIN photodiode or miniature GM tube were developed and have attracted a lot of attention because of the advantages of their nature such as indication of dose rate and the cumulative dose, and facilitation of record keeping. In this paper, we have developed a high-sensitivity electronic personal dosimeter with silicon PIN photodiode. The electronic personal dosimeter is constructed with silicon PIN photodiode, preamplifier, and shaping amplifier. To show the effectiveness of electronic personal dosimeter, we conducted nuclear radiation experiments using $\gamma$-ray Ba-133, Cs-137, and Co-60. The electronic personal dosimeter have a good linearity on $\gamma$-ray energy and activity.

  • PDF

Contralateral Breast Doses Depending on Treatment Set-up Positions for Left-sided Breast Tangential Irradiation (좌측 유방암 환자의 방사선 치료 시 환자자세에 따른 반대편 유방의 산란선량 측정)

  • Joo, Chan Seong;Park, Su Yeon;Kim, JongSik;Choi, Byeong Gi;Chung, Yoonsun;Park, Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • Purpose : To evaluate Contralateral Breast Doses with Supine and Prone Positions for tangential Irradiation techniques for left-sided breast Cancer Materials and Methods : We performed measurements for contralateral doses using Human Phantom at each other three plans (conventional technique, Field-in-Field, IMRT, with prescription of 50 Gy/25fx). For the measurement of contralateral doses we used Glass dosimeters on the 4 points of Human Phantom surface (0 mm, 10 mm, 30 mm, 50 mm). For the position check at every measurements, we had taken portal images using EPID and denoted the incident points on the human phantom for checking the constancy of incident points. Results : The contralateral doses in supine position showed a little higher doses than those in prone position. In the planning study, contralateral doses in the prone position increased mean doses of 1.2% to 1.8% at each positions while those in the supine positions showed mean dose decreases of 0.8% to 0.9%. The measurements using glass dosimeters resulted in dose increases (mean: 2.7%, maximum: 4% of the prescribed dose) in the prone position. In addition, the delivery techniques of Field-in-field and IMRT showed mean doses of 3% higher than conventional technique. Conclusion : We evaluated contralateral breast doses depending on different positions of supine and prone for tangential irradiations. For the phantom simulation of set-up variation effects on contralateral dose evaluation, although we used humanoid phantom for planning and measurements comparisons, it would be more or less worse set-up constancy in a real patient. Therefore, more careful selection of determination of patient set-up for the breast tangential irradiation, especially in the left-sided breast, should be considered for unwanted dose increases to left lung and heart. In conclusion, intensive patient monitoring and improved patient set-up verification efforts should be necessary for the application of prone position for tangential irradiation of left-sided breast cancer.

  • PDF

A Study on Radiation Exposure Dose of Operator During Interventional Radiology Procedure (방사선 중재적 시술 중 시술자의 피폭선량에 대한 연구)

  • Jeon, Mi-Eun;Lim, Cheong-Hwan;Jung, Hong-Ryang;You, In-Gyu;Hong, Dong-Hee;Kang, Byung-Sam
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Interventional radiologists are not aware of the potential injury from procedures. The purpose of this study are to evaluate radiation exposure of interventional radiologist from intervention procedures and to develop guideline of the simple methods for decreasing their radiation exposure from intervention procedure. In this study, Dosimeters were used to monitor operator doses of radiation exposure in a broad range of procedures from 20 interventional radiologist during the periods of 3 months. And, we searched protection methods of each interventional radiologist. During TACE procedure, there was using 0.5 mmPb radiation protector decreased average 89.5 % of radiation exposure. Thicker radiation protector provide decreasing radiation exposure. And radiation exposure dose decreased average 47.7 % by using pulse fluoroscopic mode. Therefore, interventional radiologist should wear protective aprons, use active shielding, monitor their doses, and know how to poisoning themselves during the procedure and operate correct of the machines for minimum dose.

A Study on the Application of Two-dosimeter Algorithm to Estimate the Effective Dose in an Inhomogeneous Radiation Field at Korean Nuclear Power Plants (원전 불균일 방사선장하에서 유효선량 평가를 위한 복수선량계 알고리즘 적용방안 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.151-160
    • /
    • 2008
  • In Korean nuclear power plants (NPPs), two thermoluminescent dosimeters (TLD) were provided to workers who work in an inhomogeneous radiation field; one on the chest and the other on the head. In this way, the effective dose for radiation workers at NPPs was determined by the high deep dose between two radiation dose from these TLDs. This represented a conservative method of evaluating the degree of exposure to radiation. In this study, to prevent the overestimation of the effective dose, field application experiments were implemented using two-dosimeter algorithms developed by several international institutes for the selection of an optimal algorithm. The algorithms used by the Canadian Ontario Power Generation (OPG) and American ANSI HPS N13.41, NCRP (55/50), NCRP (70/30), EPRI (NRC), Lakslumanan, and Kim (Texas A&M University) were extensively analyzed as two-dosimeter algorithms. In particular, three additional TLDs were provided to radiation workers who wore them on the head, chest, and back during maintenance periods, and the measured value were analyzed. The results found no significant differences among the calculated effective doses, apart from Lakshmanan's algorithm. Thus, this paper recommends the NCRP(55/50) algorithm as an optimal two-dosimeter algorithm in consideration of the solid technical background of NCRP and the convenience of radiation works. In addition, it was determined that a two-dosimeter is provided to a single task which is expected to produce a dose rate of more than 1 mSv/hr, a difference of dose rates depending on specific parts of the body of more than 30%, and an exposure dose of more than 2 mSv.

Quality Control of Radiation Dosimetry Service (개인피폭선량 측정기관의 품질관리기준 개발)

  • Lee, Jun-Haeng;Lee, Sang-Bock;Chang, Kun-Jo;Lee, Kwang-Yong;Lee, Hyun-Koo;Kim, Hyeog-Ju;Jin, Gye-Hwan
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2009
  • We have developed standards based on international criterions for the quality control of dose tested by the measurement institutions of individual exposure doses through improving the reliability of data on the exposure dose of individuals working in radioactive environment and securing the accuracy and reliability of individual dose measurements. Laws related to radiation dose applied to domestic institutions refer to ANSI N13.11.1993, but currently, in U.S. and some other countries the measurement of radiation doses is based on ANSI N13.11.2001 that reduced test categories and tightened the standards. We made efforts to simplify the standards and to reduce the number of dosimeters required in experiment, and avoided preventing or hindering the use of future technologies not approved under the current law such as glass dosimeter and optical stimulation dosimeter. The Quality Management Manual of Radiation Dosimetry Service, Assessment Manual of Radiation Dosimetry Service Accreditation Program, and the Personnel Dosimetry Performance. Criteria for Testing are documents applicable in supervising laboratories.

  • PDF

Bias-corrected Hp(10)-to-Organ-Absorbed Dose Conversion Coefficients for the Epidemiological Study of Korean Radiation Workers

  • Jeong, Areum;Kwon, Tae-Eun;Lee, Wonho;Park, Sunhoo
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2022
  • Background: The effects of radiation on the health of radiation workers who are constantly susceptible to occupational exposure must be assessed based on an accurate and reliable reconstruction of organ-absorbed doses that can be calculated using personal dosimeter readings measured as Hp(10) and dose conversion coefficients. However, the data used in the dose reconstruction contain significant biases arising from the lack of reality and could result in an inaccurate measure of organ-absorbed doses. Therefore, this study quantified the biases involved in organ dose reconstruction and calculated the bias-corrected Hp(10)-to-organ-absorbed dose coefficients for the use in epidemiological studies of Korean radiation workers. Materials and Methods: Two major biases were considered: (a) the bias in Hp(10) arising from the difference between the dosimeter calibration geometry and the actual exposure geometry, and (b) the bias in air kerma-to-Hp(10) conversion coefficients resulting from geometric differences between the human body and slab phantom. The biases were quantified by implementing personal dosimeters on the slab and human phantoms coupled with a Monte Carlo method and considered to calculate the bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients. Results and Discussion: The bias in Hp(10) was significant for large incident angles and low energies (e.g., 0.32 for right lateral at 218 keV), whereas the bias in dose coefficients was significant for the posteroanterior (PA) geometry only (e.g., 0.79 at 218 keV). The bias-corrected Hp(10)-to-organ-absorbed dose conversion coefficients derived in this study were up to 3.09- fold greater than those from the International Commission on Radiological Protection publications without considering the biases. Conclusion: The obtained results will aid future studies in assessing the health effects of occupational exposure of Korean radiation workers. The bias-corrected dose coefficients of this study can be used to calculate organ doses for Korean radiation workers based on personal dose records.

A Study on the Environmental Radiation Dose Measurement in the Nuclear Medicine Department (핵의학과에서 환경방사선량 측정에 대한 연구)

  • Kang, Bo-Sun;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2118-2123
    • /
    • 2010
  • Korean individual occupational exposure control is focused on the retrospective service to the over-exposed person by the reading of personal dosimeter. Since the radiophamaceuticals using in the nuclear medicine department are uncontained radiation sources, the potential exposure at working environment is very high. Moreover, a patient remains radioactive for hours or even days after the administration of a radiopharmaceutical for diagnosis or treatment. Thus, the proper working environmental exposure control must be established and executed to protect not only the affiliated employees, but also guardians accompanying patients and temporarily visiting public from the exposure by the patients. Japanese radiation protection law regulates working environmental radiation exposure by regularly measuring and filing the environmental dose for years. This study was aimed at measuring working environmental radiation dose in the nuclear medicine department of an university hospital located in Daejeon, Korea. We measured the accumulation radiation dose in air at 8 locations in the nuclear medicine department by using the same method as in Japan with glass dosimeters. The highest dose rate, 0.23 mSv per month, was measured at the waiting room, and the second one is at reception desk. Even though the doses were lower than the Korean constraint dose rate (0.3 mSv/week) at the boundary of the radiation controlled area, it was over the dose limit of public (1 mSv/y) and environment (0.25 mSv/y). Conclusionally, it was found that the new or additional procedure was necessary to less the exposure dose to the receptionist and guardians by the environmental radiation dose in the nuclear medicine department.