• Title/Summary/Keyword: Radiation Damage

Search Result 794, Processing Time 0.021 seconds

Deficiency of Bloom's Syndrome Protein Causes Hypersensitivity of C. elegans to Ionizing Radiation but Not to UV Radiation, and Induces p53-dependent Physiological Apoptosis

  • Kim, Yun Mi;Yang, Insil;Lee, Jiyeung;Koo, Hyeon-Sook
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.228-234
    • /
    • 2005
  • Caenorhabditis elegans him-6 mutants, which show a high incidence of males and partial embryonic lethality, are defective in the orthologue of human Bloom's syndrome protein (BLM). When strain him-6(e1104) containing a missense him-6 mutation was irradiated with ${\gamma}$-rays during germ cell development or embryogenesis, embryonic lethality was higher than in the wild type, suggesting a critical function of the wild type gene in mitotic and pachytene stage germ cells as well as in early embryos. Even in the absence of ${\gamma}$-irradiation, apoptosis was elevated in the germ cells of the him-6 strain and this increase was dependent on a functional p53 homologue (CEP-1), suggesting that spontaneous DNA damage accumulates due to him-6 deficiency. However, induction of germline apoptosis by ionizing radiation was not significantly affected by the deficiency, indicating that HIM-6 has no role in the induction of apoptosis by exogenous DNA damage. We conclude that the C. elegans BLM orthologue is involved in DNA repair in promeiotic cells undergoing homologous recombination, as well as in actively dividing germline and somatic cells.

Plasmid DNA damage by neutron and ${\gamma}$-ray in the presence of BSH (BSH 존재시 중성자 및 ${\gamma}$-ray 조사에 따른 plasmid DNA의 손상)

  • Chun, Ki-Jung;Seo, Won-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.65-68
    • /
    • 2006
  • In this study, the extent of plasmid DNA damage was observed according to concentration of BSH(Boron Sulfhydryl Hydride) and irradiation doses of neutron and ${\gamma}$-ray. The plasmid used was both pBR 322 (2870 bp) and ${\Phi}X174$ RF(5386 bp) DNA. Plasmid DNA damage by irradiation in the presence of BSH was analyzed by agarose gel electrophoresis. In the neutron experiment, DNA damage of both plasmid DNAs was increased according to increasing the concentration of BSH and neutron doses. But in the ${\gamma}$-ray experiment, there appeared no dose dependency as compared to the neutron experiment. The extent of the plasmid DNA damage in the presence of BSH was somewhat different according to irradiation by neutron or ${\gamma}$-ray.

XPS STUDY ON THE EFFECT OF LOW-ENERGY ELECTRON IRRADIATION ON DNA DAMAGE BY Fe3+ ION

  • Noh, Hyung-Ah;Park, Yeun-Soo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.87-91
    • /
    • 2015
  • We have employed X-ray photoelectron spectroscopy (XPS) technique to examine the combined effects of low-energy electron (LEE) irradiation and $Fe^{3+}$ ion on DNA damage. pBR322 plasmid DNA extracted from E. coli ER2420 was used for preparing DNA-$Fe^{3+}$ sample. The C1s XPS spectra were scanned for LEE-irradiated and LEE-unirradiated samples and then curve-fitted. For the samples with LEE irradiation only or with Fe ion only, no significant changes from pure DNA samples were observed - a single effect of either $Fe^{3+}$ ion or LEE irradiation did not cause a significant damage. However, when these two components were combined, the DNA damage was increased quite significantly, compared to the sum of DNA damages caused by $Fe^{3+}$ ion and by LEE irradiation independently. This observation is consistent with our previous results [Radiat. Res. 177, 775 (2012)] which was done using gel-electrophoresis technique. Partial interpretation of the observed spectrum peaks was also attempted.

The protective effects of trace elements against side effects induced by ionizing radiation

  • Hosseinimehr, Seyed Jalal
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.66-74
    • /
    • 2015
  • Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation.

RADIATION-INDUCED DISLOCATION AND GROWTH BEHAVIOR OF ZIRCONIUM AND ZIRCONIUM ALLOYS - A REVIEW

Late side effects of radiation treatment for head and neck cancer

  • Brook, Itzhak
    • Radiation Oncology Journal
    • /
    • v.38 no.2
    • /
    • pp.84-92
    • /
    • 2020
  • Patients undergoing radiation therapy for head and neck cancer (HNC) experience significant early and long-term side effects. The likelihood and severity of complications depends on a number of factors, including the total dose of radiation delivered, over what time it was delivered and what parts of the head and neck received radiation. Late side effects include: permanent loss of saliva; osteoradionecrosis; radiation recall myositis, pharyngoesophageal stenosis; dental caries; oral cavity necrosis; fibrosis; impaired wound healing; skin changes and skin cancer; lymphedema; hypothyroidism, hyperparathyroidism, lightheadedness, dizziness and headaches; secondary cancer; and eye, ear, neurological and neck structures damage. Patients who undergo radiotherapy for nasopharyngeal carcinoma tend to suffer from chronic sinusitis. These side effects present difficult challenges to the patients and their caregivers and require life-long strategies to alleviate their deleterious effect on basic life functions and on the quality of life. This review presents these side effects and their management.

Radioprotective Effect of Cyclo(L-Phenylalanyl-L-Prolyl) on Irradiated Rat Lung

  • Lee, Keyong-Ho;Rhee, Ki-Hyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.369-376
    • /
    • 2008
  • In the present study, we investigated the radioprotective effect of cyclo(L-phenylalanyl-L-prolyl) on irradiated rat lungs to determine its potential as a radioprotective agent. We found that early lung damage induced by irradiation was reduced by treatment with 40mg/kg of cyclo(L-phenylalanyl-L-prolyl) in the latent and early pneumonitis phases. Expression of $TNF-{\alpha}\;and\;TGF-{\beta}1$ at 2 and TGF-${\beta}1$ at 8 weeks post-irradiation was decreased in animals that received both radiation and cyclo(L-phenylalanyl-L-prolyl) compared with animals that received radiation alone. Evidence indicated that the proinflammatory cytokine TNF-${\alpha}$ and the fibrogenic cytokine TGF-${\beta}1$ likely play a role in the radioprotective effect of cyclo(L-phenylalanyl-L-prolyl). However, besides TNF-${\alpha}$ and TGF-${\beta}1$ expressions, the precise mechanism by which cyclo(L-phenylalanyl-L-prolyl) ameliorates the induced radiation damage is not clear.

SYNERGISTIC INTERACTION OF ENVIRONMENTAL TEMPERATURE AND MICROWAVES: PREDICTION AND OPTIMIZATION

  • Petin, Vladislav G.;Kim, Jin-Kyu;Kolganova, Olga I.;Zhavoronkov, Leonid P.
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • A simple mathematical model of simultaneous combined action of environmental agents has been proposed to describe the synergistic interaction of microwave and high ambient temperature treatment on animal heating. The model suggests that the synergism is caused by the additional effective damage arising from an interaction of sublesions induced by each agent. These sublesions are considered to be ineffective if each agent is taken individually. The additional damage results in a higher body temperature increment when compared with that expected for an independent action of each agent. The model was adjusted to describe the synergistic interaction, to determine its greatest value and the condition under which it can be achieved. The prediction of the model was shown to be consistent with experimental data on rabbit heating. The model appears to be appropriate and the conclusions are valid.

Radiation Damage Effects in $NB^+$ Implanted Sapphire After Annealing

  • Huang, N.K.;Naramoto, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.78-84
    • /
    • 1998
  • Niobium ions of 380 keV energy have been implanted at 300k in sapphire with a dose of $5\times10^{16}\textrm{ions/cm}^2$ and subsequently thermal annealed up to $1100^{\circ}C$ at reducing atmosphere. The behavior of the radiation damage produced by ion implantation followed by annealing is investigated using optical absorption technique and X-ray photoelectron spectroscopy(XPS). It is found that different defects annealed are dependent on the annealing temperature owing to different mechanisms which are proposed on the basis of the optical absorption measurement, and the implanted niobium in sapphire is in different local environments with different charge states after annealing, which are analyzed by XPS measurements.

  • PDF

Dose absorption of Omicron variant SARS-CoV-2 by electron radiation: Using Geant4-DNA toolkit

  • Mehrdad Jalili Torkamani;Chiman Karami;Pooneh Sayyah-Koohi;Farhood Ziaie;Seyyedsina Moosavi;Farhad Zolfagharpour
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2421-2427
    • /
    • 2024
  • In this research, the Omicron variant of the SARS-CoV-2 virus was simulated and exposed to electron radiation with up to 20 keV energy. Absorbed energy was measured for spike protein, nucleocapsid protein, and envelope of the virus. Simulations were performed by Geant4-DNA in a water environment at temperature of 20 ℃ and pressure of 1 atm. Since the viral RNA is kept inside the nucleocapsid protein, damage to this area could destroy the viral RNA strand and create an inactive virus. Our findings showed that electron beams with an energy of 2.5 keV could cause a maximum absorption dose and consequently maximum damage to the nucleocapsid and effectively be used for inactivation virus.