• Title/Summary/Keyword: Radiation Area

Search Result 1,664, Processing Time 0.033 seconds

Comparison and Analysis of Radiation Environment between Downtown and Suburban Area during Summer Season (대구 도심과 인근 교외지역의 하절기 복사 성분 특성 연구)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.105-116
    • /
    • 2014
  • The objective of this study was to compare and analyze of radiation environment between downtown and suburban area by observation of short, diffuse and long-wave radiation during summer season. The followings are main results from this study. 1) The trends of long-wave radiation is increasing from May to August and the variation of daily range is decreased. It is confirmed that the temperature was closely relevant to long wave radiation. 2) During observation period, suburban area is higher than downtown the value of direct solar radiation. 3) There are much direct solar radiation in suburban area than downtown. But, it was measured much more horizontal solar radiation at the downtown area. From the this result, we can conclude that diffuse radiation play a important role at horizontal solar radiation.

Antenna Radiation Efficiency of the Korean NDGPS Based on Radiation Power Measurements

  • Kim, Young-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • The differential global positioning system (DGPS) transmits a GPS enhancement signal using a top-loaded monopole antenna in the medium frequency range. The top-loaded antenna in the medium frequency band can attain a radiation efficiency on the order of 10%. The antenna ground plane characteristics affect the antenna radiation efficiency. To improve the radiation efficiency, it is necessary to install the antenna on a ground plane with large enough physical dimensions and good conductivity. The antenna radiation efficiency is a primary factor in determining the DGPS service area. The service area of the DGPS using a medium frequency band is dominantly affected by the antenna radiation efficiency. To determine antenna radiation efficiencies accurately, the antenna radiation efficiencies of DGPS are deduced from the propagation power in this paper. Based on the deduced antenna radiation efficiencies, the service area for the Korean nationwide-DGPS is analyzed and evaluated.

Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(I) - Observation of the Long and Short Wave Radiation in Summer and Winter Season of Daegu - (도심부와 교외지역의 장·단파 복사와 상관도 분석 (I) -대구지역의 동·하절기 장·단파 복사 관측과 해석 -)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.94-100
    • /
    • 2013
  • The objective of this study was to compare and analyze for seasonal long short-wave radiation characteristics between downtown area and suburban area in Daegu through field observations. This study was confirmed the regional and seasonal radiation environments and it can utilize as basic data for the analysis of the urban radiation environment and the effects of urbanization. The followings are main results from this study. 1) The downward shortwave radiation showed the similar value of the radiation generally in the downtown area and the suburban area of the city during the winter and summer season. but, long-wave radiation is always higher in downtown area. 2) In case of the long-wave radiation at two stations, we observed $230{\sim}270W/m^2$ in the winter season and $415{\sim}470W/m^2$ in summer season. As a result, we can see summer season is higher than winter about two times in long-wave radiation. 3) In case of short wave radiation, there is high correlation between two stations in winter season but very low correlation between two stations in summer season because of local atmosphere unstability and etc.

Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident (원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가)

  • Go, A Ra;Kim, Min Jun;Cho, Nam Chan;Seol, Jeung Gun;Kim, Kwang Pyo
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

Observation and Analysis of the Long and Short Wave Radiation According to Different Altitudes and Locations in Daegu During Summer (대구지역의 고도와 위치에 따른 하절기 장·단파복사 관측과 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.71-81
    • /
    • 2012
  • This study for the understanding of the radiation environment according to the altitude in urban area in the summer observes the long and short wave radiation environment at the 4 urban areas with different height and the 1 suburban area. The results of this study are as follows. (1) When the altitude was high, the more short wave radiation was observed. (2) As the altitude was high, the temperature of atmosphere got lower. And because of that the downward long wave radiation was also lower. This general trend was confirmed through the study. (3) Through the observation of long wave radiation, the upper atmosphere of suburban area had the atmosphere characteristic which the temperature was rising and decreasing faster. Therefore, the difference radiation characteristics between the urban and suburban area were confirmed. (4) The result of the ratio of short wave radiation to long wave radiation(short wave radiation/long wave radiation) according to the altitude and location, the value was increased when the distance was far from the artificiality structure or a heat source, and the urban effect became smaller. Thus, it is expected that the ratio will be an evaluation index for evaluating urbanization effect.

The analysis of solar radiation to solar plant area based on UAV geospatial information system (UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • Recently the construction of solar plant showed a steady growth in influence of renewable energy policy. It is very important to determine the optimal location and aspect of solar panel using analyzed data of solar radiation to solar plant area beforehand. This study analyzed solar radiation in solar plant area using DEM acquired from UAV geospatial information. Mean solar radiation of 2017 was calculated as $1,474,466W/m^2$ and total solar radiation of 2017 considering solar plant area showed $33,639MW/m^2$ on analyzed result. It is important to analyze monthly solar radiation in aspect of maintenance works of solar plant. Monthly solar radiation of May to July was calculated over $160,000W/m^2$ and that of January to February and November to December showed under $80,000W/m^2$ in monthly solar radiation analysis of solar plant area. Also this study compared with solar radiation being calculated from UAV geospatial information and that of National Institute of Meteorological Sciences. And mean solar radiation of study area showed a little high in comparison with whole country data of National Institute of Meteorological Sciences, because the 93.7% of study area was composed of south aspect. Therefore this study can be applied to calculate solar radiation in new developed solar plant area very quickly using UAV.

Radiobiological Evaluation in Pig Bred in the Vicinity of Yeonggwang Nuclear Power Station Using Micronuclei in Cytokinesis-blocked Lymphocyte (림프구의 미소핵을 지표로 영광 원자력발전소 주변 사육 돼지의 방사선 생물학적 평가)

  • 김세라;강창모;김성호
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.286-290
    • /
    • 2004
  • Cytogenetic and hematological analysis was performed in peripheral blood of pig in the vicinity of Yeonggwang nuclear power station and control area. The frequency of micronuclei (MN) in peripheral blood lymphocytes from pig was used as a biomarker of radiobiological effects resulting from exposure to environmental radiation. An estimated dose of radiation was calculated by a best fitting linear-quadratic model based on the radiation-induced MN formation from the swine lymphocytes exposed in vitro to radiation over the range from 0 Gy to 4 Gy. MN rates in lymphocytes of pig from Yeonggwang nuclear power station and control area were 10.60/1,000 and 11.10/1,000, respectively. There were no significant differences in MN frequencies and hematological values in pig between Yeonggwang and control area. The study indicates that the MN assay in lymphocyte of pig is a rapid, sensitive and accurate method that can be used to monitor a large population exposed to radiation.

A Study on the Analysis of Solar Radiation Characteristics on a High Elevated Area (고지대 일사량 특성분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack;Auh, Chung-Moo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.23-28
    • /
    • 2003
  • The purpose of this study is to procure basic data to be used for solar power plant and concentrating collector designs. Site elevation is one of the major factors which influences the incoming insolation to the earth surface. Because the nonpermanent gases such as ozone, water vapor are unmixed components of the atmosphere and their concentrations are the function of height, the site elevation effects the relative proportion of the atmospheric constituents. We have measured solar radiation on Jiri Mt. (1,400m) and in Gurye area(115m) at the near same latitude. These values were then compared to obtain their characteristics and to investigate the potential for the solar utilization for both high and low elevated areas. From the experimental results, we concluded that 1) Daily mean horizontal global radiation and normal beam radiation on Mt. Jiri are 9.5%, and 35.3% higher than Gurye area respectively for a clear day. 2) A significant difference in atmospheric clearness index is observed between Mt. Jiri and Gurye areas.

Characteristics of the Seasonal Variation of the Radiation in a Mixed Forest at Kwangneung Arboretum (광릉수목원 혼합림에서 복사 에너지의 계절 변화 특성)

  • 김연희;조경숙;김현탁;엄향희;최병철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.285-296
    • /
    • 2003
  • The measurement of the radiation energy, trunk temperature, leaf area index (LAI), air temperature, vapor pres-sure, and precipitation has been conducted under a mixed forest at Kwangneung Arboretum during the period of 2001. Characteristics of the diurnal and seasonal variation of the radiative energy were investigated. The aerodynamic roughness length was determined as about 1.6 m and the mean albedo was about 0.1 The downward short-wave radiation was linearly correlated with the net radiation and its correlation coefficient was about 0.96. From this linear relation, the heating coefficient was calculated and its annual mean value was about 0.21 The albedo and heating coefficient was varied with season, surface characteristics, and meteorological conditions. The diurnal and seasonal variations of radiation energy were discussed in terms of the surface characteristics and meteorological conditions. In the daytime, during clear skies, net radiation was dominated by the shortwave radiation. In presence of clouds and fog, the radiation energy was diminished. At night, the net radiation was entirely dominated due to the net longwave radiation. There was no distinct diurnal variation in net radiation flux during the overcast or rainy days. The net radiation was strongest in spring and weakest in winter. The seasonal development in leaf area was also reflected in a strong seasonal pattern of the radiation energy balance. The timing, duration, and maximum leaf area and trunk temperature were found to be an important control on radiation energy budget. The trunk temperature was either equal or warmer than air temperature during most of the growing season because the canopy could absorb a substantial amount of sunlight. After autumn (after the middle of October), the trunk temperature was consistently cooler than air temperature.

Analysis on Daily Variation Mechanism of Short-wave Radiation between Downtown and Suburban Area during Summer Season (하절기 도심과밀지역과 인근 교외지역의 단파복사 일변화 메커니즘에 대한 해석)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.111-122
    • /
    • 2014
  • The purpose of this study is to understand daily variation of short-wave radiation trends according to the state of surface and observation of atmosphere conditions in downtown and suburban observation area. The followings are main results from this study. 1) We found out daily air temperature variation of downtown is less than that of suburban area because of bigger heat capacity of artificial elements such as massive buildings and pavements. 2) It is more effective to estimate of air condition by water vapor pressure than relative humidity in the atmosphere. 3) The difference of solar radiation ratio between downtown and suburban area is dependant on different atmosphere conditions at two observation stations.