• Title/Summary/Keyword: Radiation Accident

Search Result 308, Processing Time 0.035 seconds

Comparison of Environmental Radiation Survey Analysis Results in a High Dose Rate Environment Using CZT, NaI(Tl), and LaBr3(Ce) Detectors

  • Sungyeop Joung;Wanook Ji;Eunjung Lee;Young-Yong Ji;Yoomi Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.543-558
    • /
    • 2023
  • Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.

A Discussion for Alteration of the Radiation Issues Based on the Clipping Analyses of Radiation Articles Reported in Korea

  • Kim, Joo Yeon;Youn, Dol Mi;Yoo, Ji Yup;Park, Tai Jin
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.161-165
    • /
    • 2016
  • Background: Radiation accidents having occurred in recent containing the accident in Fukushima nuclear power plants of Japan were resulted to the increase in some public concern, anxiety and confusion for radiation or nuclear safety. The public anxiety for radiation is not being decreased though the announcements done in radiation research institutes in Korea. Therefore, this study aims at providing an effective system for radiation publicity to the public members by the clipping analysis for the radiation articles reported in the media. And, the relation between those radiation issues and the radiation perception to the public members is analyzed. Materials and Methods: The radiation articles reported by them in 2013 and 2014 have been collected, and they are then classified with the article characteristic, field and tendency. Classified articles have been reviewed by dividing as two year. The 210 articles have been compared for their tendencies, characteristics and fields by year reported, and their characteristic comparison by reported year are then reviewed. Results and Discussion: Though the frequency that the radiological accidents have occurred in worldwide is far low compared to the accidental frequencies occurred in the general industrial fields, the radiation perception is being still deteriorated because of its special problem, which is defined as exposure, contamination or radioactivity, about radiation. The basic principles for radiation communication were suggested for preventing some unnecessary misunderstanding due to the variation of understanding for radiation issues. Conclusion: It is necessary to perform a variety of strategies for the publicity in improving the radiation perception, to build a relationship with the press or the media and then to consistently interact with them. Radiation communication must be performed by radiation experts or complete charge department, and must be consistently performed and be taken predictable patterns.

Radiological Risk Assessment for $^{99m}Tc$ Generator using Uncertainty Analysis (불확실성 분석을 이용한 $^{99m}Tc$ 발생기 사용의 방사선위험도 평가)

  • Jang, H.K.;Kim, J.Y.;Lee, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.129-139
    • /
    • 2004
  • Recently, much attentions are paid to the risk associated with increased uses of medium size radiation sources in medical and industrial fields. In this study, radiation risks to the worker and to the general public due to $^{99m}Tc$ generator were assessed for both normal and accident conditions. Based on the event tree technique, exposure scenarios for various situations were derived. Uncertainty analysis based on the Monte-Carlo technique was applied to the risk assessment for workers and members of the public in the vicinity of the work place. In addition, sensitivity analysis was performed on each of the five independent input parameters to identify importance of the parameters with respect to the resulting risk. Because the frequencies of normal tasks are fat higher than those of accidents, the total risk associated with normal tasks were higher than the accident risk. The annual dose due to normal tasks were $0.6mSv\;y^{-1}$ for workers and $0.014mSv\;y^{-1}$ for public, while in accident conditions $3.96mSv\;y^{-1}\;and\;0.0016mSv\;y^{-1}$, respectively. Uncertainty range of accident risk was higher by 10 times than that of normal risk. Sensitivity analysis revealed that source strength, working distance and working time were crucial factors affecting risk. This risk analysis methodology and its results will contribute to establishment of risk-informed regulation for medium and large radioactive sources.

A Study on Exposure to radiation of the patient who visited an emergency room at a University Hospital (한 대학병원 응급실에 방문한 환자의 방사선 피폭에 관한 연구)

  • Ahn, Buyung-Ju;Lee, Sang-Bock;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.23-34
    • /
    • 2007
  • To find how much radiation was exposed the patients who visit emergency room, a measurement study was made for radiation amount toward 200 patients selected randomly among visitors to an emergency room in a university hospital from March 16 to 31st, 2006. The results are as follows ; 1. Among the subjects 50 person(25.0%) were transferred from other hospitals, 24 persons(8.3) come after traffic accident, 50 persons for other accident and 76 persons for general medical care. 2. The average frequency of X-ray taking was calculated as 6.4 time per person among transferred patients, 14.5 times per person among patients with traffic accident and 2.6 times per person among general medical care. 3. The radiation exposure amount by kind of X-ray showed 28.9mGyfor general X-ray diagnosis, 84.2mGy for CT scanning and 1.02mGy for other special radiation study. 4. Average radiation exposure amount was calculated as 24.6mGy by transferred patients, 55.2mGy by patients with traffic accident, 17.1mGy by patients with other accidents and 17.0mGy by general patients. 5. Through the comparison of radiation exposure amount among to subject with maximum allowance threshold by International Commission on X-ray Radium Protection, transferred patients exceeded 6 times than allowance in whole body except extremities and joints, blood forming organ, reproductive system, vitreous body of eye, bone, thyroid gland, skin and etc, Patient suffered from traffic accidents were exposed 10 times more than allowance. In conclusion, the radiation exposure amount during X-rat diagnosis re too much and exceeded allowance standard by International Commission on X-ray Radium Protection. So further study and preventive measure to decrease radiation exposure by patients who visit emergency room.

  • PDF

Comparison of Gene Mutation Frequency in $Tradescantia$ Stamen Hair Cells Detected after Chernobyl and Fukushima Nuclear Power Plant Accidents

  • Panek, Agnieszka;Miszczyk, Justyna;Kim, Jin-Kyu;Cebulska-Wasilewska, Antonina
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • Our aim was to investigate the genotoxicity of ambient air in the Krak$\acute{o}$w area after Fukushima Nuclear Power Plant (NPP) accident and compare with results from Chernobyl fallout. For the detection of ambient air genotoxicity the technique for screening gene mutation frequency in somatic cells of the $Tradescantia$ stamen hairs ($Trad$-SH assay) was used. Since 11th of March 2011 (Fukushima NPP accident), several pots containing at least 15 shoots of bioindicating plants were exposed to ambient air at 2 sites in the Krak$\acute{o}$w surrounding area, one in the city center, and about 100 pots in a control site (in the glasshouse of the Institute of Nuclear Physics) Continuous screening of mutations was performed. Progenies of 371,090 cells exposed were analyzed. Mutation frequency obtained in the first 10 days has shown a mean control level (GMF*100=$0.06{\pm}0.01$). At scoring period related to influence of a potential Fukushima fallout, a significant increase of gene mutation frequencies above the control level was observed at each site in the range, 0.10~0.33 depending on the location, (mean value for all sites GMF*100=$0.19{\pm}0.05$) that was associated with a strong expression of toxic effects. In the reported studies following the Chernobyl NPP accident monitoring $in$ $situ$ of the ambient air genotoxicity was performed in the period since April $29^{th}$ till June $3^{rd}$ 1986 also with Trad-SH bioindicator. In general, mutation frequency increases due to Chernobyl fallout(GMF*100=$0.43{\pm}0.02$) were corresponding to fluctuation of radioactivity in the air reported from physical measures, and to published reports about increase in chromosome aberration levels. Although, recent data obtained from monitoring of the ambient air quality in the Krak$\acute{o}$w and surroundings are lower when compared to results reported after Chernobyl NPP accident, though results express a significant increase above the control level and also are corresponding with increased air radioactivity reported from physical measurements. Statistically significant in comparison to control increase in gene mutation rates and more prolonged than that after Chernobyl fallout increase of GMF was observed during the period following the Fukushima NPP failure.

Temporal Change in Radiological Environments on Land after the Fukushima Daiichi Nuclear Power Plant Accident

  • Saito, Kimiaki;Mikami, Satoshi;Andoh, Masaki;Matsuda, Norihiro;Kinase, Sakae;Tsuda, Shuichi;Sato, Tetsuro;Seki, Akiyuki;Sanada, Yukihisa;Wainwright-Murakami, Haruko;Yoshimura, Kazuya;Takemiya, Hiroshi;Takahashi, Junko;Kato, Hiroaki;Onda, Yuichi
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.128-148
    • /
    • 2019
  • Massive environmental monitoring has been conducted continuously since the Fukushima Daiichi Nuclear Power accident in March of 2011 by different monitoring methods that have different features together with migration studies of radiocesium in diverse environments. These results have clarified the characteristics of radiological environments and their temporal change around the Fukushima site. At three months after the accident, multiple radionuclides including radiostrontium and plutonium were detected in many locations; and it was confirmed that radiocesium was most important from the viewpoint of long-term exposure. Radiation levels around the Fukushima site have decreased greatly over time. The decreasing trend was found to change variously according to local conditions. The air dose rates in environments related to human living have decreased faster than expected from radioactive decay by a factor of 2-3 on average; those in pure forest have decreased more closely to physical decay. The main causes of air dose rate reduction were judged to be radioactive decay, movement of radiocesium in vertical and horizontal directions, and decontamination. Land-use categories and human activities have significantly affected the reduction tendency. Difference in the air dose rate reduction trends can be explained qualitatively according to the knowledge obtained in radiocesium migration studies; whereas, the quantitative explanation for individual sites is an important future challenge. The ecological half-lives of air dose rates have been evaluated by several researchers, and a short-term half-life within 1 year was commonly observed in the studies. An empirical model for predicting air dose rate distribution was developed based on statistical analysis of an extensive car-borne survey dataset, which enabled the prediction with confidence intervals. Different types of contamination maps were integrated to better quantify the spatial data. The obtained data were used for extended studies such as for identifying the main reactor that caused the contamination of arbitrary regions and developing standard procedures for environmental measurement and sampling. Annual external exposure doses for residents who intended to return to their homes were estimated as within a few millisieverts. Different forms of environmental data and knowledge have been provided for wide spectrum of people. Diverse aspects of lessons learned from the Fukushima accident, including practical ones, must be passed on to future generations.

Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident

  • Jae Seok Kim;Byeong Ryong Park;Minsu Cho;Won Il Jang;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.270-277
    • /
    • 2023
  • Exposure to ionizing radiation induces free radicals in human nails. These free radicals generate a radiation-induced signal (RIS) in electron paramagnetic resonance (EPR) spectroscopy. Compared with the RIS of tooth enamel samples, that in human nails is more affected by moisture and heat, but has the advantages of being sensitive to radiation and easy to collect. The fingernail as a biological sample is applicable in retrospective dosimetry in cases of localized hand exposure accidents. In this study, the dosimetric characteristics of fingernails were analyzed in fingernail clippings collected from Korean donors. The dose response, fading of radiation-induced and mechanically induced signals, treatment method for evaluation of background signal, minimum detectable dose, and minimum detectable mass were investigated to propose a fingernail-EPR dosimetry protocol. In addition, to validate the practicality of the protocol, blind and field experiments were performed in the laboratory and a non-destructive testing facility. The relative biases in the dose assessment result of the blind and field experiments were 8.43% and 21.68% on average between the reference and reconstructed doses. The results of this study suggest that fingernail-EPR dosimetry can be a useful method for the application of retrospective dosimetry in cases of radiological accidents.

RADIATION DAMAGE IN THE HUMAN BODY ACUTE RADIATION SYNDROME AND MULTIPLE ORGAN FAILURE

  • AKASHI, MAKOTO;TAMURA, TAIJI;TOMINAGA, TAKAKO;ABE, KENICHI;HACHIYA, MISAO;NAKAYAMA, FUMIAKI
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.231-238
    • /
    • 2006
  • Whole-body exposure to high-dose radiation causes injury involving multiple organs that depends on their sensitivity to radiation. This acute radiation syndrome (ARS) is caused by a brief exposure of a major part of the body to radiation at a relatively high dose rate. ARS is characterized by an initial prodromal stage, a latent symptom-free period, a critical or manifestation phase that usually takes one of four forms (three forms): hematologic, gastrointestinal, or cardiovascular and neurological (neurovascular), depending upon the exposure dose, and a recovery phase or death. One of the most important factors in treating victims exposed to radiation is the estimation of the exposure dose. When high-dose exposure is considered, initial dose estimation must be performed in order to make strategy decisions for treatment as soon as possible. Dose estimation can be based on onset and severity of prodromal symptoms, decline in absolute lymphocyte count post exposure, and chromosomal analysis of peripheral blood lymphocytes. Moreover, dose assessment on the basis of calculation from reconstruction of the radiation event may be required. Experience of a criticality accident occurring in 1999 at Tokai-mura, Japan, showed that ARS led to multiple organ failure (MOF). This article will review ARS and discuss the possible mechanisms of MOF developing from ARS.

An Improved Methodology of Monetary Values of the Unit Collective Dose for Intervention Against Long-Term Exposure Following a Nuclear Accident (원자력 사고후 장기피폭에 대한 개입을 위한 피폭선량 금전가 산정의 개선된 방법론)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Choi, Young-Gil;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.77-80
    • /
    • 2002
  • A more practice approach for the determination of monetary values of the unit collective dose for intervention against long-term exposure following a nuclear accident was proposed. In addition, she monetary values of the unit collective dose estimated from the proposed approach were compared with those estimated from the previous model, which are derived from assumptions of routine exposure and the same values are applied in a nuclear accident without modification, using Korean economic data. The monetary values based on the proposed approach showed a distinct difference depending on inequity in the distribution of individual doses. The discounting rate was also an important factor in determination of monetary values of the unit collective dose.