• Title/Summary/Keyword: Radial pulse

Search Result 193, Processing Time 0.023 seconds

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Projection-type Fast Spin Echo Imaging (프로젝션 타입 고속 스핀 에코 영상)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.42-51
    • /
    • 2000
  • Purpose: Projection-type Fast Spin Echo (PFSE) imaging is robust to patient motion or flow related artifact compared to conventional Fast Spin Echo (FSE) imaging, however, it has difficulty in controlling $T_2$ contrast. In this paper, Tz contrast in the PFSE method is analyzed and compared with those of the FSE method with various effective echo times by computer simulation. The contrasts in the FSE and PFSE methods are also compared by experiments with volunteers. From the analysis and simulation, it is shown that ${T_2}-weighted$ images can well be obtained by the PFSE method proposed. Materials and methods: Pulse sequence for the PFSE method is implemented at a 1.0 Tesla whole body MRI system and $T_2$ contrasts in the PFSE and FSE methods are analyzed by computer simulation and experiment with volunteers. For the simulation, a mathematical phantom composed of various $T_2$ values is devised and $T_2$ contrast in the reconstructed image by the PFSE is compared to those by the FSE method with various effective echo times. Multi-slice ${T_2}-weighted$ head images of the volunteers obtained by the PFSE method are also shown in comparison with those by the FSE method at a 1.0 Tesla whole body MRI system. Results: From the analysis, $T_2$ contrast by the PFSE method appears similar to those by the FSE method with the effective echo time in a range of SO-lOOms. Using a mathematical phantom, contrast in the PFSE image appears close to that by the FSE method with the effective echo time of 96ms. From experiment with volunteers, multi-slice $T_2-weighted$ images are obtained by the PFSE method having contrast similar to that of the FSE method with the effective echo time of 96ms. Reconstructed images by the PFSE method show less motion related artifact compared to those by the FSE method. Conclusion: The projection-type FSE imaging acquires multiple radial lines with different angles in polar coordinate in k space using multiple spin echoes. The PFSE method is robust to patient motion or flow, however, it has difficulty in controlling $T_2$ contrast compared to the FSE method. In this paper, it is shown that the PFSE method provides good $T_2$ contrast (${T_2}-weighted$ images) similar to the FSE method by both computer simulation and experiments with volunteers.

  • PDF

Evaluating the Accuracy of Blood Pressure Measurement in General Hospital Nurses (종합병원 간호사의 혈압측정의 정확성 평가)

  • Kim Jong-Sook;Kim Sang-Soon
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.7 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • To assess the accuracy of blood pressure measurement in general hospital nurses, 276 nurses at four hospital in Kyungju city and Pohang city were observed during the study period 20 December 1998 to 29 December 1998. The nurses measuring the blood pressure of simulated patient's were checked by the researcher or 20 items, that are recommended for consideration when doing a blood pressure measurement. Of the six items in the preparation step for measuring blood pressure, the accuracy of 'patients shouldn't talk during the procedure' had the lowest frequency(27.1%) and the other five items were above 80%. Of the ten items on blood pressure measuring technique, the accuracy of the frequency for 'inflating the cuff until the radial or brachial artery pulse is no longer palpable and then adding 30mmHg' was 0%, 'waiting $30{\sim}60$ seconds before reinflating the cuff' was alse 0%, 'rapidly deflating the cuff', 0.3%, 'rapidly and steadily inflating the cuff to the maximal level as per above-mentioned initial systolic pressure assessment step', 0.7%, 'reading the pressure to the nearest 2mmHg mark on the manometer', 10.8%, the remaining items were above 70%. Of the four items on blood pressure recording, the accuracy of 'recording the cuff size' had a frequency of 0.3%, 'recording the patient's position such as sitting, standing or lying position', 10.8%, 'recording the arm or leg which was used for measuring the blood pressure', 53.6%, and 'recording systolic/diastolic pressure', 100%. The variables significantly related to the accuracy of the blood pressure measurement were age, career position at hospital, and qualification education for blood pressure measurement(p<0.01). In the multiple regression analysis, position and qualification education were significant variables(p<0.01). In conclusion, the accuracy of blood pressure measurement was very low, thus, qualification education for blood pressure measurement should be done immediately to improve the accuracy of measurement by nurses in general hospitals.

  • PDF