• Title/Summary/Keyword: Radial distribution

Search Result 854, Processing Time 0.032 seconds

The Wall Shear Rate Distribution Near an End-to-End Anastomosis : Effects of Graft Compliance and Size

  • Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • The patency rates of small diameter vascular grafts are disappointing because of the formation of thrombus and intimal hyperplasia. Among the various factors influencing the success of graft surgery, the compliance and the size of a graft are believed to be the most important physical properties of a vascular graft. Mismatch of compliance and size between an artery and a graft alters anastomotic flow characteristics, which may affect the formation of intimal hyperplasia. Among the hemodynamic factors influencing the development of intimal hyperplasia, the wall shear stress is suspected as the most important one. The wall shear stress distributions are experimentally measured near the end-to-end anastomosis models in order to clarify the effects of compliance and diameter mismatch on the hemodynamics near the anastomosis. The effects of radial wall motion, diameter mismatch and impedance phase angle on the wall shear rate distributions near the anastomosis are considered. Compliance mismatch generates both different radial wall motion and instantaneous diameter mismatch between the arterial portion and the graft portion during a flow cycle. Mismatch in diameter seems to be affecting the wall shear rate distribution more significantly compared to radial wall motion. The impedance phase angle also affects the wall shear rate distribution.

  • PDF

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).

The Globular Cluster System of the Virgo Giant Elliptical Galaxy NGC 4636

  • Park, Hong-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.55.2-55.2
    • /
    • 2010
  • We present a photometric and spectroscopic study of the globular clusters (GCs) in the giant elliptical galaxy NGC 4636 in the Virgo cluster. The photometry of the GCs is based on HST/WFPC2 images for the inner region and deep, wide field Washington $CT_1$ CCD images for the outer region. We investigated the color distribution, the radial number density profile, the spatial distribution, and the mean color of the bright blue GCs about the GCs in NGC 4636. We obtained spectra of the GC candidates in NGC 4636 using the Multi-Object Spectroscopy (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the SUBARU 8.2m Telescope. We measured the velocities for 105 GCs in NGC 4636. Using the 238 GCs obtained from combining our results with data in the literature, we investigated the kinematics of the GC system of NGC 4636: the rotation, the velocity dispersion, the radial variation, and the orbit. We also investigated the distribution and the radial variation of the metallicities, ages, and alpha-elements of the GCs in NGC 4636 derived using the absorption lines. We compared the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We found several correlations between the kinematics of the GCs and the global parameters of their host galaxies. Finally we discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.

  • PDF

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

Optimal Capacitor Placement and Operation for Loss reduction and Improvement of Voltage Profile in Radial Distribution Systems (방사상 배전계통의 손실감소 및 전압보상을 위한 커패시터 최적 배치 및 운용)

  • Kim, Tae-Kyun;Baek, Young-Ki;Kim, Kyu-Ho;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1009-1011
    • /
    • 1997
  • This paper presents an optimization method which determines locations and size of capacitors simultaneously while minimizing power losses and improving voltage profile in radial distribution systems. Especially, the cost function associated with capacitor placement is considered as step function due to banks of standard discrete capacities. Genetic algorithms(GA) are used to obtain efficiently the solution of the cost function associated with capacitors which is non-continuous and non-differentiable function. The strings in GA consist of the node number index and size of capacitors to be installed. The length mutation operator, which is able to change the length of strings in each generation, is used. The proposed method which determines locations and size of capacitors simultaneously can reduce power losses and improve' voltage profile with capacitors of minimum size. Its efficiency is proved through the application in radial distribution systems.

  • PDF

Investigation of Radial Distributions of Tangential Strains and of Moisture Contents within a Log Cross Section by Circumferential Slices

  • Choi, Jun-Ho;Lee, Nam-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • This study was carried out to provide the so-called circumferential slicing method for investigating radial distributions of the tangential strains and of moisture contents within the log cross section (LC) of Kalopanax pictus during indoor drying it. While the heartwood showed an almost uniform moisture content distribution in the range of about 50~55% in case of the green wood, it has gradually decreased toward the outer side, showing about 19% of moisture content difference from the innermost slice. Although the moisture gradient along the radial direction has gradually become gentle as drying progresses, the sapwood of the outer side represented the moisture contents below the fiber saturation point after 24 hours of drying while the heartwood in the inner part showed the moisture contents higher than the fiber saturation point. The pith side was laid under the tensile stress after 24 hours of drying, and then gradually decreasing toward the bark side, and showed the distribution being switched again to the tensile stress on the bark side. As the drying has progressed, this trend got more intensified, and finally showed the U-shaped distribution model after 48 hours of drying. The circumferential slice test is considered to be suitable in quantitatively determining the tangential strains and moisture content within a LC.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

Development and Performance Evaluation of Radial Exhaust Multi-port System for Real-time Particle Size Distribution Measurement (실시간 입자분포 측정을 위한 Radial Exhaust Multi-port System의 개발 및 성능평가)

  • Lee, Hong Ku;Lee, Yang-Woo;Jeon, Ki Soo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.133-137
    • /
    • 2013
  • Measuring particle size distribution is one of the primary concerns in aerosol studies. For a nano-particle size distribution measurement, many scientists use a combination of a differential mobility analyzer (DMA) and a condensation particle counter (CPC) system, which is a called scanning mobility particle sizer (SMPS). Although it has a very high particle size resolution, some issues still remain. These problems include residence time between a DMA and a CPC, discontinuity of a CPC, and disturbance due to long scanning time during the precise measurement of particles. In particular, long scanning time is not adequate for measuring particle size distribution since the particle concentration is changing during the measurement. In this study, we developed radial exhaust multi-port system (REM-system) with no scanning time and high resolution to measure real-time particle size distribution. As a result of the REM-system performed using mono-disperse particle, it is expected that this system will be suitable for measuring continuously changing aerosol. If the counting efficiency of multi-condensation particle counter (M-CPC) and data inversion matrix are completed, REM-system will be a very adequate system for unsteady aerosol, which changes for SMPS scanning time.

Measurement Method of Residual Stresses in Thick Composite Cylinders (두꺼운 복합재 원통의 잔류응력 측정방법)

  • Kim, Jong-Woon;Park, Dong-Chang;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.245-248
    • /
    • 2005
  • During manufacturing thick composite cylinders, large thermal residual stresses are developed and induce catastrophic interlaminar failures. Since the residual stresses are dependent on many process parameters, such as temperature distribution during cure, cure shrinkage, winding tension, and migration of fibers, calculation of the residual stresses is very difficult. Therefore a radial-cut method have been used to measure the residual stresses in the composite cylinders. But the conventional radial-cut method needs to know numerous material properties which are not only troublesome to obtain but also vary with change of fiber arrangement during consolidation. In this paper, a new radial-cut method with cut-cylinder-bending test was proposed and the measured residual stresses were compared with calculated thermal residual stresses. It was found that the new radial-cut method which does not need to know any of material properties gave better estimation of residual stresses regardless of radial variation of material properties. Additionally, interlaminar tensile strength could be obtained by the cut-cylinder-bending test.

  • PDF

A two dimensional analysis of the evolution of the particle size distribution in particle laden high temperature jet flows including the effects of coagulation and buoyancy (입자가 부유된 고온의 제트유동에서 응집과 부력을 고려한 이차원 입자크기 분포해석)

  • Lee, Bang-Won;Choe, Man-Su;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.380-391
    • /
    • 1997
  • A numerical study has been done on the evolution of particle size distribution in particle laden high temperature jet flows undergoing convection, diffusion, thermophoresis and coagulation. The dynamic behavior of these particles have been modelled by approximating the particle size distribution by a lognormal function throughout the process and the moments of the particle size distribution have been used to solve the general dynamic equation. The size distributions of spherical particles in the radial and axial direction have been obtained including the effect of buoyancy. Of particular interests are the variations of geometric mean diameter, number concentration and polydispersity. Results show that buoyancy significantly alters the size distribution in both axial and radial direction. One dimensional analysis for non-spherical particles has also been done and the results have been compared with the existing experimental data.