• 제목/요약/키워드: Radial cracks

검색결과 81건 처리시간 0.03초

인공경량골재 내부에 발생하는 방사형 균열의 억제 방법에 관한 연구 (Study on the prevention methods of radial cracks generated in artificial lightweight aggregate)

  • 강지민;김강덕;강승구
    • 한국결정성장학회지
    • /
    • 제25권5호
    • /
    • pp.199-204
    • /
    • 2015
  • 본 연구에서는 잔사회와 준설토로 제조된 구형의 인공경량골재 내부에 생성되는 방사형 균열의 원인 및 그 억제 방법에 대하여 연구하였다. 인공경량골재는 잔사회와 준설토를 각각 7 : 3의 무게 비로 혼합하고 직경이 5~20 mm인 구 형태로 성형한 후 $1200^{\circ}C$에서 10분간 직화소성법으로 제조하였다. 골재 내부의 균열은 골재 지름이 작을수록 발생이 억제되었다. 또한 $SiO_2$ 분말을 첨가한 경우, 분말의 크기가 클수록 또는 첨가량이 증가할수록 방사형 균열 발생이 억제되었다. 균열이 억제된 인공경량골재의 비중은 1.3~1.6이고, 흡수율은 5~20 %의 범위를 나타내었다. 따라서 본 논문에서 제조된 인공경량골재는 건설 및 환경소재 등 여러 분야에 적용 가능할 것으로 보이며, 더불어 잔사회 및 준설토의 재활용율을 높이는데 크게 기여할 것으로 기대된다.

미소 비커스 압입균열에 의한 초경합금의 파괴 인성치 측정 (Measurement of Fracture Toughness of WC-Co Composites by Micro-Vickers Indentation Cracks)

  • Lee, O.S.;Son, I.S.;Park, W.K.;Hwang, S.K.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.5-13
    • /
    • 1995
  • Various techniques to measure fracture toughness which is an important parameter to predict fracture behavious of structural materials have been reported. Among these mathods, this paper describes the micro-Vickers indentation crack method to estimate the fracture toughness of some WC-Co composites. Two indentation crack patterns (such as radial-median cracks (orhalf-penny cracks) and Palmqvist cracks generated during indentation) are referred precisely. The fracture toughness of WC-4.7wt%Co, WC-6wr%Co and WE-9wr%Co composites were estimated by using some equations given by Shetty et al., Nihara et al. in this study. We show the reliability of indentation method by comparing the results with those from literatures. The appropriate equation to estimate the fracture toughness in the case of WC-Co composite is given. In addition, some technical informations in terms of the crack length by indentation in estimating the existence of the surface residual stress that prevents to obtain an accurate fracture toughness are presented.

  • PDF

The effect of radial cracks on tunnel stability

  • Zhou, Lei;Zhu, Zheming;Liu, Bang;Fan, Yong
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.721-728
    • /
    • 2018
  • The surrounding rock mass contains cracks and joints which are distributed randomly around tunnels, and in the process of tunnel blasting excavation, radial cracks could also be induced in the surrounding rock mass. In order to clearly understand the impact of radial cracks on tunnel stability, tunnel model tests and finite element numerical analysis were implemented in this paper. Two kinds of materials: cement mortar and sandstone, were used to make tunnel models, which were loaded vertically and confined horizontally. The tunnel failure pattern was simulated by using RFPA2D code, and the Tresca stresses and the stress intensity factors were calculated by using ABAQUS code, which were applied to the analysis of tunnel model test results. The numerical results generally agree with the model test results, and the mode II stress intensity factors calculated by ABAQUS code can well explain the model test results. It can be seen that for tunnels with a radial crack emanating from three points on tunnel edge, i.e., the middle point between tunnel spandrel and its top with a dip angle $45^{\circ}$, the tunnel foot with a dip angle $127^{\circ}$, and the tunnel spandrel with $135^{\circ}$ with tunnel wall, the tunnel model strength is about a half of the regular tunnel model strength, and the corresponding tunnel stability decreases largely.

표면거칠기를 가진 유리의 입자충격 손상기구에 관한 실험적 연구 (An Experimental Study on the Damage Mechanism of Particle Impact in a Scratched Glass)

  • 서창민;정성묵;이문환
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2196-2204
    • /
    • 1996
  • The damage mechanism by the impact of steel ball on the soda-lime glass having a different surface roughness was investigated. An initiation and a propagation behavior of cracks formed by each impact velocity were quantitatively studied. A 4-point bending test was carried out to evaluate the remaining bending strength of a scratched soda-lime glass which impacted by the steel ball. As the surface roughness was increased, the shape of cracks became more irregular rather than those of the smooth specimens. The phenomenon of turning up in the wing of cone cracks occurred even at the lower velocity than the critical velocity caused the crushing. The threshold velocity of cracks initiation generally became lower than those of smooth specimen. An initiation and a propagation behavior of radial cracks had no relation with the direction of scratch on the surface. The remaning benidng strength of the scratched specimen according to impact velocity had no big difference compared with those of the smooth specimen.

${Al_2}}O_3}-TiO_2$ 플라즈마 코팅된 유리의 입자충격에 의한 손상기구 (Damage mechanism of particle impact in a ${Al_2}}O_3}-TiO_2$plasma coated soda-lime glass)

  • 서창민;이문환;홍대영
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.529-539
    • /
    • 1998
  • A quantitative study of impact damage of ${Al_2}}O_3}-TiO_2$ plasma coated soda-lime glasses was carried out and compared with that of the uncoated smooth glass specimen. The shape of cracks by the impact of steel ball was observed by stereo-microscope and the decrease of the bending strength due to the impact of steel ball was measured through the 4-point bending test. At the low velocity, cone cracks were occurred. As the impact velocity increases, initial lateral cracks were propagated on the slanting surface of a cone crack, and radial cracks were generated at the crushed site. When the impact velocity of steel ball exceeds the critical velocity, the contact site of specimen was crushed due to plastic deformation and then radial and lateral cracks were largely grown. Crack length of coated specimens was smaller than that of uncoated smooth specimen due to the effect of coating layer on the substrate surface. According to impact velocity, the bending strength of coated specimens had no significant difference, compared with that of the uncoated smooth specimen. But this represents that the bending strength of coated specimens was increased, considering the effect of sand blasting damage which was performed to increase the adhesion force of coating layer.

유리의 미세, 방사상, 동심원 균열을 효율적으로 생성하기 위한 L-System 기반의 절차적 합성 방법 (L-System Based Procedural Synthesis Method to Efficiently Generate Dense, Radial, and Concentric Cracks of Glass)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권5호
    • /
    • pp.1-7
    • /
    • 2017
  • 우리는 유리에 충격에 가해졌을 때 나타나는 복잡한 균열 생성 기법을 제안한다. 유리에 충격이 가해졌을 때 표현되는 균열 패턴은 미세(Dense), 방사상(Radial), 동심원(Concentric) 균열로 분류 할 수 있으며, 이 균열 패턴을 절차적 방법을 이용하여 효율적으로 표현한다. 외력이 발생하면 균열 예제 데이터를 기반으로 L-system을 응용하여 실시간으로 균열이 전파되는 모양을 합성한다. 물리 기반 균열 생성은 정확한 균열의 분석 및 모델링이 가능하지만 계산비용이 크기 때문에 계산속도가 느린 단점이 있으며, 절차적 방법은 비교적 빠른 계산 속도를 갖지만, 정확한 균열의 특징을 포착하기에는 충분하지 않다. 우리는 이 두 가지 장점을 모두 얻기 위해 L-system을 이용하여 유리의 균열을 모델링하고, 결과적으로 유리의 미세한 균열 패턴을 실시간 환경에서 사실적으로 표현한다.

계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동 (Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar)

  • 신형섭;오상엽;최수용;서창민;장순남
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

지하 핵 폐기물 저장 암염의 파괴현상 검증 및 분석 (Prediction of Hydrofracture of Rock Salt under Ground at the Waste Isolation Pilot Plant)

  • 허광희;이처근;허열
    • 한국지반공학회지:지반
    • /
    • 제11권3호
    • /
    • pp.139-162
    • /
    • 1995
  • WIPP에서 가스로 인한 파괴의 가능성을 해석적 계산과 수치해석 및 실내실첩을 통하여 연구하였다. 우선 본 연구와 관련된 화학반응식을 조사한 결과, 폐기물 내의 철이 산화하면서 다량의 가스가 발생될 수 있음을 알았다. 또한 간단한 지하수 흐름의 계산결과, 투수성이 높은 파쇄영역이 존재하지 않는 경우 이 가스량은 암염 내부와 약한 수평면에 인장균열을 초래하기에 충분히 높은 압력을 야기시킬 것이다. 해석적 계산은 선형탄성파괴역학의 개념을 사용하여 수행하였고, 수치해석은 유한요소법을 사용하여 행하였다. 또한 실내실험은 발생가능한 파괴 메카니즘을 설명하기 위하여 행하였다. 해석결과 약한 경석고층에서 수평으로 균열이 증가된 뒤에 그 균열은 이 층을 뜰고나가 암염 위쪽으로 계속 전폭되어 지표면 쪽의 수평방향과 53$^{\circ}$경사각을 갖고 지표면에 도달된다. 이와 같은 후자의 현상을 방지하기 위하여 경석고는 암염의 인성보다 0.5590배가 적은 파괴인성을 가져야 하는 것으로 나타났다. 실험결과 세 가지 형태의 균열(radial vertical cracks, horizontal circular cracks and cone -shaped cracks)이 관찰되었다.

  • PDF

입자충격에 의한 유리의 손상기구에 관한 실험적 연구 (An Experimental Study on Damage Mechanism of Glass Resulting Frojm Particle Impact)

  • 서창민;신형섭;황병원
    • 대한기계학회논문집A
    • /
    • 제20권6호
    • /
    • pp.1903-1912
    • /
    • 1996
  • A quantitative study of impact damage of a soda-lime glass was carried out. An initiation and a propagation of cracks by the impact of two inds of steel ball was investigated. The fron, side and rear view of cracks were observed by a stereo-microscope. And the lowering of the benidng strength due to the impact of steel balls was examined through the 4-point bending test. A transparent glass is very helpful to understand and analyze the impact damage behavior of another brittle matereial. A deagdram about crack patterns according to the threshold impact velocity was sketched. A ring crack and a cone crack were formed at the low impact velocity. And as the impact velocity was higher, initial lateral crack was generated on the slanting surface of cone crack, and radial cracks were generated from the outermost ring crack. When the impact velocity of steel balls exceed a critical velocity, the contact site of specimens were crushed. According to the propagation of a cone crack, a rapid strength degradation occurred. In the specimen having crushed region, a bending strength was converged to a constant value instead of strength degradation.

고속 충격을 받는 취성재 평판의 관통파괴 강도 (A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact)

  • 김지훈;심재기;양인영
    • 한국안전학회지
    • /
    • 제11권4호
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF