• Title/Summary/Keyword: Radial Velocity

Search Result 608, Processing Time 0.029 seconds

Atomization Characteristics of shear coaxial twin fluid injector (동축형 인젝터의 미립화 특성)

  • Han, J.S.;Kang, G.T.;Kim, Y.;Kim, S.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF

LDA Measurements on the Turbulent Flow Characteristics of a Small-Sized Axial Fan (소형 축류홴의 난류유동 특성치에 대한 LDA 측정)

  • Kim, Jang-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.371-376
    • /
    • 2001
  • The operating point of a small-sized axial fan for refrigerator is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the four operating points such as $\varphi=0.1$, 0.18, 0.25 and 0.32 by using fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is utilized for supplying particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that both the streamwise and the tangential components exist predominantly in downstream except $\varphi=0.1$ and have a maximum value at the radial distance ratio of about 0.8, but the radial component, which its velocity is relatively small, is acting role that only turns flow direction to the outside or the central part of axial fan. Moreover, all of the velocity components downstream at $\varphi=0.1$ show much smaller than those upstream due to the static pressure rise at the low-flowrate region.

  • PDF

Investigation on the Turbulent Flow-Field of a Small-size Axial Fan with Different Operating Points (운전점이 다른 소형 축류홴의 난류 유동장 고찰)

  • Kim, J.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2008
  • The turbulent flow characteristics around a small-size axial fan(SSAF) for a refrigerator are strongly dependent upon the operating points. Four operating points such as $\phi$ =0.1, 0.18, 0.25 and 0.32 were adopted in this study to investigate three-dimensional turbulent flow characteristics around the SSAF by using a fiber-optic type Laser Doppler Anemometer(LDA) system. Downstream mean velocity profiles of the SSAF along the radial distance show that axial and tangential velocity components exist predominantly, except $\phi$ = 0.1, and have a maximum value at $r/R{\fallingdotseq}0.8$, but radial velocity component having a relatively small value only turns flow direction to the outside or the central part of the SSAF. The turbulent intensity shows that the radial component exists most greatly after $r/R{\fallingdotseq}0.5$. Downstream turbulent kinetic energy at $\phi$ = 0.25 and 0.32 together has the largest peak value at $r/R{\fallingdotseq}0.9$.

  • PDF

Spectral Analysis of the Seyfert Galaxy NGC 4051 and Mrk 79

  • Park, So-Yeong;Hyung, Siek;Son, Donghoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.32.4-33
    • /
    • 2018
  • We study the kinematical properties of the Seyfert galaxy, NGC 4051 and Mrk 79. The data used in this study had been observed with OASIS spectrometer at CFHT 3.6m telescope using O300 grism, MR1. The wavelength coverage is $4760{\AA}$ $-5558{\AA}$, which includes emission lines, $H{\beta}4861{\AA}$, $[OIII]4959{\AA}$, and $[OIII]5007{\AA}$. We observe that forbidden lines have both narrow and broad components. Radial velocity of NGC 4051 is blue-shifted, perhaps due to the z value derived by the earlier studies, 0.002336. We use the revised z, 0.002099, according to the radial velocity of the central spectrum. NGC 4051 is face-on galaxy without rotation observed. Radial velocity of Mrk 79 shows a rotation characteristic in narrow components, relative to $PA=60^{\circ}$, red-shifted to north-west, and blue-shifted to south-east. In the [OIII] broad components, blue-shifted points are observed at the place at 2 arcsec apart from the center of Mrk 79 to north-west, which are likely to be gas outflow.

  • PDF

Estimation of Halo CME's radial speeds using coronal shock waves based on EUV observations

  • Jeong, Hyunjin;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.4-55
    • /
    • 2018
  • Propagating speeds of coronal mass ejections (CMEs) have been calculated by several geometrical models based on multi-view observations (STEREO/SECCHI and SOHO/LASCO). But in 2015, we were unable to obtain radial velocity of a CME because the STEREO satellites were located near the backside of the sun. As an alternative to resolve this problem, we propose a method to combine a coronal shock front, which appears on the outermost of the CME, and an EUV-wave that occurs on the solar disk. According to recent studies, EUV-wave occurs as a footprint of the coronal shockwave on the lower solar atmosphere. In this study, the shock, observed as a bubble shape, is assumed as a perfect sphere. This assumption makes it possible to determine the height of a coronal shock, by matching the position of an EUV-wave on the solar disk and a coronal shock front in coronagraph. The radial velocity of Halo-CME is calculated from the rate of coronal shock position shift. For an event happened on 2011 February 15, the calculated speed in this method is a little slower than the real velocity but faster than the apparent one. And these results and the efficiency of this approach are discussed.

  • PDF

Orbital stability study and transit-timing variations of the extrasolar planetary system: K2-3

  • Choi, Beom-Kyu;Hinse, Tobias C.;Yoon, Tae Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.79.1-79.1
    • /
    • 2016
  • We investigated the dynamical properties of the K2-3 multi-planet system. Recently three transiting planets are discovered using the extended Kepler2 (K2) mission (Crossfield et al. 2015). We extended their preliminary stability study by considering a substantial longer integration time. Since planet mass is not known from photometry we calculated exoplanets masses using empirical mass-radius relations (Weiss & Marcy 2014). Forward numerical integration was done using the MERCURY integration package (Chambers 1999). Our results demonstrate that this system is stable over a time scale of $10^8years$. Furthermore, we investigated the dynamical effects of a hypothetical planet in the semi-major axis vs eccentricity space. For stable orbits of the hypothetical planet we calculated transit-timing variation (TTV) and radial velocity signals. We find that for a hypothetical perturber with mass 1-13 Mjup, semi-major axis 0.2 - 0.8 AU and eccentricity 0.00-0.47 the following timing signals for the planet K2-3 b is ~ 5 sec, K2-3 c is ~ 130 sec and for K2-3 d is ~ 190 sec. The radial velocity signal of the hypothetical planet is ~ 4 m/s. Using typical transit-timing errors from the K2 mission, we find that the above hypothetical planet would not be detectable. Its radial velocity signal, however, would be detectable using the APF 2.4m telescope or HARPS at the ESO/La Silla Observatory in Chile.

  • PDF

Velocity Measurement Technique in a Narrow Passage by Hot-wire Anemometer (열선유속계를 이용한 좁은 유로 내 유속 측정법)

  • Kim, Won-Kap;Han, Seong-Ho;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2007
  • It was noted by the several researchers that the voltage outputs in response to a single yawed hot-wire sensor in a flow perpendicular to the axis deviate from the theoretical voltage output by King's law and Jorgensen's relation. This study noticed that the calibration coefficients of original Grande's method are not constant and fairly sensitive to the radial angle (${\alpha}_{R}$). For more accuracy, this study interpolated the parameters of the Grande relation as a function of radial angle and compared velocity components with ones by Jorgensen and original Grande relation in the calibration jet flow. Finally, as a test case, 3-dimensional turbulent flows of the inlet plane of 180 degree bend are measured and compared the velocity components by above three methods and showed the characteristics of the flows.

Partitioning Bimodal Spectrum Peak in Raw Data of UHF Wind Profiler (UHF 윈드프로파일러 원시 자료의 이중 스펙트럼 첨두 분리)

  • Jo, Won-Gi;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • In addition to non-meteorological echoes, meteorological echoes with large scattering effects, such as precipitation, cause errors in wind data measured by wind profiler. In the rainfall situation, the Doppler spectrum of wind profiler shows both the rainfall signal and the atmospheric signal as two peaks. The vertical radial velocity is very large due to the falling rain drop. The radial velocity contaminated by rainfall decreases the accuracy of the horizontal wind vector and leads to inaccurate weather analysis. In this study, we developed an algorithm to process raw data of wind profiler and distinguished rainfall signal and wind signal by partitioning bimodal peak for Doppler spectrum in rainfall environment.

OKAYAMA PLANET SEARCH PROGRAM

  • SATO BUN'EI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.315-318
    • /
    • 2005
  • We have carried out a precise Doppler survey of G-type giants aiming to unveil the properties of planetary systems in intermediate-mass stars ($1.5-5M_{\bigodot}$). G-type giants are promising targets for Doppler planet searches around massive stars, because they are slow-rotators and have many sharp absorption lines in their spectra and their surface activities are relatively low in contrast to their younger counterparts on the main-sequence (B-A stars). We are now monitoring radial velocities of about 300 late G-type (including early K-type) giants using HIgh Dispersion Echelle Spectrograph (HIDES) at Okayama Astrophysical Observatory. We have achieved a Doppler precision of about 6-7 m/s over a time span of 3 years using an iodine absorption cell. We found that most of the targets have radial velocity scatters of ${\sigma}{\~} 10-20 m\;s^{-1}$ over 1-3 years, with the most stable reaching levels of 6-8 m $s^{-1}$. Up to now, we have succeeded in discovering the first extrasolar planet around a G-type giant star HD 104985, and also found several candidates showing significant radial velocity variations, suggesting the existence of stellar and substellar companions. Observations have continued to establish their variability.

PULSATIONAL CHARACTERISTICS OF V1719 CYGNI WITH PECULIAR LIGHT CURVE

  • KIM CHULHEE;KIM SEUNG-LI;SADAKANE KOZO
    • Journal of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.115-134
    • /
    • 1993
  • The light curve and radial velocity curve of multiperiodic dwarf cepheid VI719 Cyg (HD200925) with peculiar light curve have been reanalyzed in order to identify the oscillation modes to confirm the helium settling within the envelope. To do these, through the period search for the photometric and radial velocity data from the literature, two different periods were determined and the oscillation modes corresponding to the first and second periods were identified as the fundamental and first radial overtones. Hence the helium settling within the envelope was confirmed from the period ratio. The color excess, metallicity, effective temperature, and surface gravity corresponding to two different modes were determined and it was found that these parameters almost do not depend upon different oscillation mode. By utilizing the surface brightness method, we investigated the variation of angular diameter and radial displacement and it was found that the angular variation is very peculiar. Also by referring to the stellar models, mass and age were determined as $2.7M_{\bigodot}$ and 0.42 Gyr respectively which make this variable star heavier and younger than other multimode dwarf cepheids. Preliminary spectroscopic CCD observations were carried out and it was found that Mg in VI719 Cygni is nearly solar abundent according to the analysis of $5172.68{\AA}MgI$ line which is inconsistent with the photometric result. It was suggested that VI719 Cyg may be classified as a $\rho$ Pup stars according to the photometric characteristics.

  • PDF