• Title/Summary/Keyword: Radial Flow Impeller

Search Result 63, Processing Time 0.023 seconds

Interaction of Impeller and Volute in a Small-size Turbo-Compressor (소형터보압축기 회전차와 볼류트의 상호작용)

  • Kim, D.W.;Ahn, B.J.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.807-812
    • /
    • 2001
  • The effects of casing shapes on the interaction of the impeller and volute in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuser, and casing, calculations with a multiple frame of reference method between the rotating and stationery parts of the domain are carried out. For incompressible turbulent flow fields, the continuity and three-dimensional time-averaged Navier-Stokes equations are employed. To predict the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load.

  • PDF

Numerical study on flows within an shrouded centrifugal impeller passage (원심회전차 내부유도장에 관한 수치해석적 연구)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.

Experimental Study on Flows within a Shrouded Centrifugal Impeller Passage -at the Shockless Condition- (밀폐형 원심회전차의 내부유동장에 관한 실험적 연구-무충돌 유입 조건에서-)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3262-3271
    • /
    • 1996
  • Flow patterns were measured in a shrouded centrifugal impeller. The flow rate in measurements was fixed at the value corresponding to a nearly zero incidence at the blade inlet. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes from the inlet to the outlet of impeller rotating at 700 rpm, and the static pressure distribution along flow passage and the slip factor at impeller outlet were calculated from the measured values. From these measured data, the primary and secondary flows, the wake production and the static pressure rise in the impeller passage were investigated. Furthermore, the secondary flow patterns and the wake's location in this impeller passage were compared with those of the unshrouded impeller.

Performance Prediction and Flow Field Calculation for Airfoil Fan with Impeller Inlet Clearance

  • Kang, Shin-Hyoung;Cao, Renjing;Zhang, Yangjun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.226-235
    • /
    • 2000
  • The performance prediction of an airfoil fan using a commerical code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passsage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub.

  • PDF

3 Dimensional Flow Analysis of Small Regenerative Pump (소형 재생펌프의 3차원 성능 해석에 관한 연구)

  • Kang, Shin-Hyoung;Lim, Hyung-Soo;Ryu, Su-Hyun;Shim, Chang-Yeul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1600-1607
    • /
    • 2004
  • Performance of a regenerative pump is evaluated based on the calculated through flows using the CFX-TASCflow code. Flow calculations are performed in one vane to vane space of the impeller and side channel. The flow is very complex three dimensional with a strong radial vortex due to centrifugal force and an axial vortex due to re-circulating flow between the impeller and the side channel. Momentum exchange on the plane between the impeller and the side channel are evaluated to estimate design parameters and viscous losses in the pump. The present study contributes to showing the capability of flow simulation of complex flow in the regenerative pump by comparing the calculated performance with the measured value.

Experimental Study on the Performance of a Cross-Flow Fan with Various Diameter Ratios of Impeller and Rearguider Shapes (임펠러 직경비 및 리어가이더 형상변화가 횡류홴 성능에 미치는 실험적 연구)

  • Kim, H.S.;Kim, D.W.;Yoon, T.S.;Park, S.K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.391-396
    • /
    • 2003
  • A cross-flow fan relatively produces higher dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. The performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, and 15% by the heat exchanger. At the low flow rate, there exist a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. The purpose of this study is to investigate the reciprocal relation among each parameter Experiments are conducted to study the effects of a rearguider and a diameter ratio of impeller on the performance analysis of a cross-flow fan. Comparing with the rearguider of radial type, the Archimedes type shows excellent results for various diameter ratios.

  • PDF

Experimental Study on Flows within an Unshrouded Centrifugal Impeller Passage(II)-on the Influence of Flow Rate- (개방형 원심회전차의 내부유동장에 관한 실험적 연구(2)-유량에 따른 영향-)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3251-3261
    • /
    • 1996
  • Flows were measured in an unshrouded centrifugal impeller. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes between the inlet and outlet of the impeller rotating at 700 rpm, which diameter is 0.39 meter, and the static pressures and the slip factor at the impeller outlet were estimated from the measured values. Measurements were made for three flow rates corresponding to zero incidence and two others with the greater and the smaller one than zero. From the measured data in these flow rates, the followings were investigated in the impeller passage, the variation of the primary and secondary flows, the leakage flows, the wake's position and its size, the static pressure rise and the loss production mechanism. Furthermore the static pressure and the slip factor were compared with the results of inviscid Quasi-3D calculation.

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

Off-design Performance Prediction of Centrifugal Pumps by Using TEIS model and Two-zone model (TEIS 모델과 두 영역 모델을 이용한 원심 펌프의 탈 설계 성능 예측)

  • Yoon, In-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.574-579
    • /
    • 2000
  • In this study. an off-design performance prediction program for centrifugal pumps is developed. To estimate the losses in an impeller flow passage, two-zone model and two-element in series(TEIS) model are used. At impeller exit. the mixing process occurs with an increase in entropy. In two-zone model. there are both primary zone and secondary zone for an isentropic core flow and an average of all non-isentropic streamtubes respectively. The level of the core flow diffusion in an impeller was calculated by using TEIS model. While internal losses in an impeller an automatically estimated by using the above models, some empirical correlations far estimating external losses. far example, disk friction loss, recirculation loss and leakage loss are used. In order to analyze the vaneless diffuser flow. the momentum equations for the radial and tangential directions are used and solved together with continuity and energy equations.

  • PDF

A Numerical Study on Slip Factor Variations in Centrifugal Compressor Impellers (원심압축기 임펠러의 미끄럼계수 변화에 관한 수치연구)

  • Oh, Jongsik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.17-23
    • /
    • 1999
  • In the present numerical analysis, investigation of the effect of blade loadings from design shape on the slip factor variation was studied. Both the Eckardt radial bladed impeller and the backswept impeller were analyzed. In addition, a new design of the blade profile was arbitrarily attempted to generate a center-loading pattern in the original backswept impeller. Three dimensional compressible Navier-Stokes flow analysis with the Baldwin-Lomax turbulence model was applied to get the numerical slip factor at each impeller exit plane using the mass-averaging technique. The numerical slip (actors are in good agreement with the experimental ones and the Wiesner's slip factors deviate further from the numerical and experimental ones in both backswept impellers. Deviation angles and meridional channel loadings are found in no relation with the trend of change of the slip factor. Blade-to-blade loadings in midspan location are, however, found to have a direct relationship, especially at the sections where maximum loadings we to be expected. That information can be utilized in establishing an improved expression for slip factors in the future.

  • PDF