• 제목/요약/키워드: Radial Contact Force

Search Result 42, Processing Time 0.029 seconds

Development of Experimental Setup for Impact Punching in Brittle Materials and Analysis of Punching Mechanism (취성재료의 펀칭가공을 위한 충격 장치 개발 및 펀칭기구 해석)

  • Sin, Hyeong-Seop;Kim, Jin-Han;O, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.629-636
    • /
    • 2001
  • In order to investigate the possibility of impact punching in brittle materials, an experimental setup was developed. In the setup, a long bar as a punch was used to apply the impact load to the specimen plate and measure the applied impact force during the impact punching process. Impact punching tests with various shape of punches were performed in soda-lime glass and silicon wafer under a different level of contact pressure. The damage appearance after the impact punching was examined according to the applied contact pressure. The minimum contact pressure required for a complete punching in glass specimens without development of radial cracks around the punched hole was sought at each condition. The minimum contact pressure increased with increasing the thickness of specimens and decreasing the end radius of punches. The profile of impact forces was measured during the impact punching experiment, and it could explain well the behavior of the punching process in brittle material plates. The measured impact force increased with increasing the contact pressure applied to the plates.

Magnetic force Characteristics of the Speed Reducer using Magnetic Focusing (자기 포커싱 방법을 적용한 감속 장치의 자기력 특성에 관한 연구)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2021
  • The magnetic gear, which amplifies the torque by filtering the magnetic field generated by the low-speed permanent magnet with a modulator, can exclude gear contact and can be effectively applied when there are environmental restrictions. In this paper, we discuss the magnetic force characteristics of a magnetic gear using a magnetic focusing array that replaces a general permanent magnet array magnetized in a radial direction along the circumferential direction. The torque increasing effect of the discussed array, known as an arrangement that increases the principal component by focusing a radial magnetic field, is compared with that of a general magnetic gear. In particular, in a magnetic gear using such an array, the sensitivity of torque according to variables is analyzed to see how various variables known as factors affecting torque have an effect.

Multi-axial Force Characteristics of Radial Electrodynamic Wheel (래디알 동전기 휠의 다축력 특성)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • The rotating electrodynamic wheel over a conductive plate produces thrust force as well as normal force. Specially, separating the conductive plate and spacing apart each part, the lateral stability of the rotating wheel is guaranteed due to the restoring force into neutral position. In this paper, the force characteristics of the electrodynamic wheel rotating over the conductive plate is analyzed using the finite element tool. First, the dominant parameters are identified considering the geometric configuration and the operating condition. And the sensitivity for the parameter deviation is quantified for the high force density. The above topology can be applied as an actuating principle for inter-city train as well as contact-free transfer device.

Design of the Air Pressure Pick-up Head for Non-Contact Wafer Gripper (비접촉식 웨이퍼 그리퍼용 공압 파지식 헤드 설계)

  • Kim, Joon-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.401-407
    • /
    • 2012
  • The recent manufacturing process in the thin wafers and flat panel necessitate new approaches to reduce handling fragile and surface-sensitive damage of components. This paper presents a new pneumatic levitation for non-contact handling of parts and substrates. This levitation can achieve non-contact handling by blowing air into an air pressure pick-up head with radial passages to generate a negative pressure region. Negative pressure is caused by the radial air flow by nozzle throat and through holes connecting to the bottom region. The numerical analysis deals with the levitational motion with different design factors. The dynamic motion is examined in terms of force balance(dynamic equilibrium) occurring to the flow field between two objects. The stable equilibrium position and the safe separation distance are determined by analyzing the local pressure distribution in the fluid motion. They make considerable design factors consisting the air pressure pick-up head. As a result, in case that the safe separation distance is beyond 0.7mm, the proposed pick-up head can levitate stably at the equilibrium position. Furthermore, it can provide little effect of torque, and obtain more wide picking region according to the head size.

Behavior Analysis of Double Lip Seal with Interference (간섭량에 따른 이중 립 실의 거동 해석)

  • Jung, H.G.;Yoo, J.C.;Park, T.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1576-1580
    • /
    • 2007
  • Typical lip seals are widely used as sealing mechanism of rotary and reciprocating shaft. Double lip seal has comparatively high stiffness and dynamic radial eccentricity. Usually material of these seals is made of elastomer and nonlinear finite element analysis is required to analyze behaviour of this material because Young's modulus is varied with working load. In this paper, MSC MARC/MENTAT is used for nonlinear analysis of double lip seal with pressure variation and interference. The contact normal force of double lip seal between lip and shaft is analyzed to reduce power loss when shaft rotates.

  • PDF

A Study on the Finite Element Analysis of Tire under Rolling and Loading Conditions (회전 및 하중을 받는 타이어의 응력해석에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 1995
  • Axisymmetric and quasi-static finite element analysis of an inflated tire rotating with constant angular velocity and contact to road has been performed. Centrifugal force effect was added to load stiffness matrix and equation of effective material properties were calculated by the Halpin-Tsai formulation. In this report, radial truck/bus tire was analyzed. It was inflated and rotated at speeds up to 140 km/h. Then, contact problem was performed to calculate stress-strain field of tire wiht flat rigid road under the load due to the self-weight of a vehicle. Significant changes of stress-strain field of tire were observed in the finite element analysis. Shear stress, strain and strain energy density were rapidly increased at the dege of #2 belt at freely rotating state. This concentrated stress and strain made belt edge sparation. Under the condition of flat riged road contact, strain energy density of #2 belt, carcass turn-up part were concentrated and bigger values than only freely rotation state. Therefore, dynamic behaivor of tire has to considered as design factors which are affected to belt edge separation and bead breakage.

  • PDF

Coupled Thermal-Mechanical Analysis of Rubber Oil Seals (열응력을 고려한 고무 오일시일 해석)

  • 김청균;전인기
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.39-42
    • /
    • 1994
  • This paper deals with the distributions of the contact stress in oil seals. The distributions of the contact stress due to the temperature effects are analyzed for various values of the interference for a nitrile rubber seal. The calculated FEM results show that the relative maximum stresses occur at the contacting area against the shaft, the flex zone, and the contacting area of the garter spring grooves. Using the coupled temperature-stress FEM a nalysis, the contact force of a radial lip seal with and without the garter spring are studied as a function of shaft diameter. The calculated results of mechanical analysis show good correspondence with those of the coupled thermal-mechanical analysis method except small values of the interference. And the calculated results indicated that the thermal stresses only have a very minor influence on the deformed shape of the lip seal as the interference increases. But the coupled temperature-stress analysis will be very useful tool to predict the contact behaviors of rubber lip seals for small values of the interference.

Local Current Distribution in a Ferromagnetic Tunnel Junction Fabricated Using Microwave Excited Plasma Method (마이크로파 여기 프라즈마법으로 제조한 강자성 터널링 접합의 국소전도특성)

  • Yoon, Tae-Sick;Kim, Cheol-Gi;Kim, Chong-Oh;Masakiyo Tsunoda;Migaku Takahashi;Ying Li
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.47-52
    • /
    • 2003
  • Ferromagnetic tunnel junctions were fabricated by dc magnetron sputtering and plasma oxidation process. The local transport properties of the ferromagnetic tunnel junctions were studied using contact-mode Atomic Force Microscopy (AFM) and the local current-voltage analysis. Tunnel junctions with the structure of sub./Ta/Cu/Ta/NiFe/Cu/Mn$\_$75/Ir$\_$25//Co$\_$70/Fe$\_$30//Al-oxide were prepared on thermally oxidized Si wafers. Al-oxide layers were formed with microwave excited plasma using radial line slot antenna (RLSA) for 5 and 7 sec. Kr gas was used as the inert gas mixed with $O_2$ gas for the plasma oxidization. No correlation between topography and current image was observed while they were measured simultaneously. The local current distribution was well identified with the distribution of local barrier height. Assuming the gaussian distribution of the local barrier height, the ferromagnetic tunnel junction with longer oxidation time was well fitted with the experimental results. As contrast, in the case of the shorter time oxidation junction, the current mainly flow through the low barrier height area for its insufficient oxygen. Such leakage current might result in the decrease of tunnel magnetoresistance (TMR) ratio.

Parametric Analysis of Tubular-Type Linear Magnetic Couplings with Halbach Array Magnetized Permanent Magnet by Using Analytical Force Calculation

  • Kim, Chang-Woo;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.110-114
    • /
    • 2016
  • Magnetic couplings are widely used in various industrial applications because they can transmit magnetic force without any mechanical contact. In addition, linear couplings have many advantages. For example, they do not need to convert rotary motion to linear motion. This paper shows an analytical analysis of tubular type linear magnetic couplings (TLMCs) with a Halbach array magnetized permanent magnet (PM). An analytical method for magnetic fields owing to PMs is performed by using magnetic vector potential as well as Poisson and Laplace equations. Then, the magnetic force is calculated by using the Maxwell stress tensor. The analytical analysis results were compared with finite element method (FEM) results. In addition, we predicted the magnetic force characteristic according to design parameters such as the iron core thickness, inner PM thickness to -outer PM thickness ratio, PM segment ratio of the axial magnetized PM segment and radial magnetized PM segment, and various pole numbers.

Screw Motion and Control of Conductive Rod by Rotating a Spiral Electrodynamic Wheel (동전기 휠을 이용한 전도성 환봉의 나선형 운동과 제어)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.882-887
    • /
    • 2011
  • A spiral electrodynamic wheel is proposed as an actuator for the contactless conveyance of a conductive rod. When rotating the wheel around the rod, a radial force, a tangential force, and an axial force are generated on the rod and cause a screw motion of the rod. The rotation of the rod is the inevitable result due to traction torque of the wheel and the unintended motion to be excluded. However, the rotating speed of the rod should be measured without mechanical contact to be cancelled out through the controller, so the electrodynamic wheel is used as a sensor measuring the rotating speed of the rod indirectly as well as an actuator. In this paper, we model the magnetic forces by the proposed wheel theoretically and compare the derived model with simulation result by Maxwell, and analyze influences on the magnetic forces by key parameters constituting the wheel. The feasibility of the conveyance system is verified experimentally.