• Title/Summary/Keyword: Radar system

Search Result 1,607, Processing Time 0.025 seconds

Short-Term Variability Analysis of the Hf-Radar Data and Its Classification Scheme (HF-Radar 관측자료의 단주기 변동성 분석 및 정확도 분류)

  • Choi, Youngjin;Kim, Ho-Kyun;Lee, Dong-Hwan;Song, Kyu-Min;Kim, Dae Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.319-331
    • /
    • 2016
  • This study explores the signal characteristics for different averaging intervals and defines representative verticies for each observatory by criterion of percent rate and variance. The shorter averaging interval shows the higher frequency variation, though the lower percent rate. In the tidal currents, we could hardly find the differences between 60-minute and 20-minute averaging. The newly defined criterion improves reliability of HF-radar data compared with the present reference which deselects the half by percent rate.

FMCW Radar simulation model with interference using a new radar performance parameter (새로운 레이더 성능지표를 이용한 FMCW 레이더 간섭 시뮬레이션 모델)

  • Mun, Sang-Kon;Park, Seung-Keun;Yang, Hoon-Gee;Cheon, Chang-Yul;Chung, Young-Seek;Bae, Kyung-Bin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.86-92
    • /
    • 2011
  • ITS(Intelligent Transport System) has been researched actively to guarantee the smooth traffic and the safety of the vehicle. In recent, as the sensor for the measurement of distance between vehicles, the FMCW radar system in millimeter wave band has been interested in ITS. Actually, 47, 60, 77, 94 and 139 GHz have been assigned for the vehicle radar frequencies in Europe and Japan. However, the performances of the FMCW radar are deteriorated due to the interferences from the surrounding radars and mobile devices. In this paper, in order to model and simulate the performance of FMCW radar under the exterior interference, we propose a new performance parameter, RER(Radius Error Rate), which contains the information of the range error due to the interferences, and show the effectiveness of the proposed parameter.

The analysis of the detection probability of FMCW radar and implementation of signal processing part (차량용 FMCW 레이더의 탐지 성능 분석 및 신호처리부 개발)

  • Kim, Sang-Dong;Hyun, Eu-Gin;Lee, Jong-Hun;Choi, Jun-Hyeok;Park, Jung-Ho;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2628-2635
    • /
    • 2010
  • This paper analyzes the detection probability of FMCW (Frequency Modulated Continuous Wave) radar based on Doppler frequency and analog-digital converter bit and designs and implements signal processing part of FMCW radar. For performance evaluation, the FMCW radar system consists of a transmitted part and a received part and uses AWGN channel. The system model is verified through analysis and simulation. Frequency offset occurs in the received part caused by the mismatching between the received signal and the reference signal. In case of Doppler frequency less than about 38KHz, performance degradation of detection does not occur in FMCW radar with 75cm resolution The analog-digital converter needs at least 6 bit in order not to degrade the detection probability. And, we design and implement digital signal processing part based on DDS chip of digital transmitted signal generator for FMCW radar.

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

Generation of radar rainfall data for hydrological and meteorological application (II) : radar rainfall ensemble (수문기상학적 활용을 위한 레이더 강우자료 생산(II) : 레이더 강우앙상블)

  • Kim, Tae-Jeong;Lee, Dong-Ryul;Jang, Sang-Min;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • A recent increase in extreme weather events and flash floods associated with the enhanced climate variability results in an increase in climate-related disasters. For these reasons, various studies based on a high resolution weather radar system have been carried out. The weather radar can provide estimates of precipitation in real-time over a wide area, while ground-based rain gauges only provides a point estimate in space. Weather radar is thus capable of identifying changes in rainfall structure as it moves through an ungauged basin. However, the advantage of the weather radar rainfall estimates has been limited by a variety of sources of uncertainty in the radar reflectivity process, including systematic and random errors. In this study, we developed an ensemble radar rainfall estimation scheme using the multivariate copula method. The results presented in this study confirmed that the proposed ensemble technique can effectively reproduce the rainfall statistics such as mean, variance and skewness (more importantly the extremes) as well as the spatio-temporal structure of rainfall fields.

Analysis of Forest Stand Structure Using Spaceborne Synthetic Aperture Radar(SAR) Data (인공위성 레이다 영상자료를 이용한 임분구조의 물리적 특성파악)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.2
    • /
    • pp.79-91
    • /
    • 1992
  • With recent development in spaceborne imaging radar system, there are growing interests using satellite synthetic aperture radar(SAR) data in various applications. This study attempted to identify the relationships between several forest stand characteristics and radar backscatter, measured from space altitude altitude at three incidence angles. Shuttle Imaging Radar-B(SIR-B) data were collected over a forested area in northern Florida in October, 1984. By using various sources of reference data (forest type maps, inventory records, aerial photographs, and Landsat Thematic Mapper data), about 400 forest stands of known characteristics were carefully located in the radar data. Relative radar backscatter for the three incidence angles of SIR-B data were compared with known forest stand parameters such as mean tree height, diameter at breast height(DBH), stand density, biomass, and relative amount of understory vegetation. The results show that these stand parameters have statistically significant correlations with the radar backscatter. In addition, the SIR-B radar backscatter from a certain stand parameter turned out differently at the three different incidence angles. Finally, the types and characteristics of currently available satellite SAR data are discussed.

TB and Knapsack Based Improved Scheduling Techniques for Multi-Function Radar (TB와 냅색 기반의 향상된 다기능 레이다 스케줄링 기법)

  • Hwang, Min-Young;Yang, Woo-Young;Shin, Sang-Jin;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.976-985
    • /
    • 2018
  • Modern radars such as the phase array radar can handle various tasks by generating a beam from a phased array antenna. Radar can be used for miscellaneous applications such as surveillance, tracking, missile guidance etc. Previous radar systems could handle only one task at a time. As such, multiple radars were required to perform simultaneous tasks. Multi-function radars can perform many tasks using only one radar system. However, the radar's resources are limited in this instance. To efficiently utilize time, it is necessary to properly schedule tasks in the radar's timeline. In this report, we investigate the efficiency of different scheduling tasks.

Analysis of Orbit Determination of the KARISMA Using Radar Tracking Data of a LEO Satellite (저궤도위성의 레이더 관측데이터를 이용한 KARISMA의 궤도결정 결과 분석)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1016-1027
    • /
    • 2015
  • In this paper, a orbit determination process was carried out based on KARISMA(KARI Collision Risk Management System) developed by KARI(Korea Aerospace Research Institute) to verify the orbit determination performance of this system, in which radar tracking data of a space debris was used. The real radar tracking data were obtained from TIRA(Tracking & Imaging Radar) system operated by GSOC(German Space Operation Center) for the KITSAT-3 finished satellite. And orbit determination error was approximately 60m compared to that of the GSOC's orbit determination result from the same radar tracking data. However, those results were influenced due to the insufficient information on the radar tracking data, such as error correction. To verify and confirm it, the error analysis was demonstrated and first observation data arc which has huge observation error was rejected. In this result, the orbit determination error was reduced such as approximately 25m. Therefore, if there are some observation data information such as error correction data, it is expected to improve the orbit determination accuracy.

A Survey on Track Fusion for Radar Target Tracking (레이다 항적융합 연구의 최근 동향)

  • Choi, Won-Yong;Hong, Sun-Mog;Lee, Dong-Gwan;Jung, Jae-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An architecture for multiple radar tracking systems can be broadly categorized according to the methods in which the tracking functions are performed : central-level tracking and distributed tracking. In the central-level tracking, target tracking is performed using observations from all radar systems. This architecture provides optimal solution to target tracking. In distributed tracking, tracking is performed at each radar system and the composite track information is formed through track fusion integrating multiple radar-level tracks. Track-to-track fusion and track-to-track association are required to perform in this architecture. In this paper, issues and recent research on the two tracking architectures are surveyed.

Pulse Doppler Radar Signal Processor Development for Main Battle Tank Using High Speed Multi-DSP (고속 Multi-DSP를 이용한 전차 탑재 펄스 도플러 레이더 신호 처리기 개발)

  • Park, Gyu-Churl;Ha, Jong-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1171-1177
    • /
    • 2009
  • A missile warning radar is an essential sensor for active protection system to detect antitank missile in all weather environments. This paper introduces missile warning radar for main battle tank and presents the results of the design and implementation of the radar signal processor using high speed multi-DSP. The key algorithms include adaptive CF AR, weighted linear fitting algorithm, S/W tracking capability, and threat decision and present test result.