• Title/Summary/Keyword: Radar system

Search Result 1,607, Processing Time 0.025 seconds

Method on Radar deployment for Ballistic Missile Detection Probability Improvement (탄도미사일 탐지확률 향상을 위한 레이더 배치 방안)

  • Park, Tae-yong;Lim, Jae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.669-676
    • /
    • 2016
  • North Korea has various ballistic missiles from short range to long range such as inter continental ballistic missiles. Short range ballistic missiles such as SCUD series are threatening to Korea peninsula. Therefore Korea is constructing various missile defense systems to protect country. Parameters influencing the received power from the target to the radar are transmitting power, antenna gain, carrier frequency, RCS(Radar Cross Section) of target and distance from radar to target. Especially, RCS and distance from target are not radar performance defined parameters but external parameters. Therefore radar deployment position that large RCS can be observed and target to radar distance should be considered in parallel to improve target detection probability. In this paper, RCS pattern of SCUD-B ballistic missile is calculated, received power is analyzed based on radar deployment position during ballistic missile trajectory and methode for optimum radar deployment position to improve target detection probability is suggested.

Design and Fabrication of an L-Band Digital TR Module for Radar (레이다용 L대역 디지털 송수신모듈 설계 및 제작)

  • Lim, Jae-Hwan;Park, Se-Jun;Jun, Sang-Mi;Jin, Hyung-Suk;Kim, Kwan-Sung;Kim, Tae-Hun;Kim, Jae-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.857-867
    • /
    • 2018
  • Active array radar is evolving into digital active array radar. Digital active array radar has many advantages for making several simultaneous radar beams from the digital receive data of each element. A digital-type transceiver(TR) module is suitable for this goal in radar. In this work, the design results of an L-band digital TR module are presented to verify the possibility of fabrication for a digital active array antenna. This L-band digital TR module consists of a gallium-nitride-type HPA to achieve a more than 350-W peak output power and one-chip transceivers that include a digital waveform generator and analog digital converter. The receiving gain was 47 dB, the noise figure was less than 2 dB, and the final output type of the four channel receiving paths was one optic signal.

Cavity-Backed Microstrip Antenna for a Monopulse Radar (모노펄스 레이다용 Cavity-Backed 마이크로스트립 안테나 개발)

  • 박종국;나형기;구연덕;이종민
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.96-103
    • /
    • 2003
  • A cavity-backed microstrip patch antenna for a monopulse radar system is designed and fabricated. Also, this antenna is shown to be suitable for the system by analyzing the measured results. Since the azimuthal beamwidth required by this system is quite broad compared to that of a usual microstrip antenna, the width of a microstrip patch is reduced considerably. The decrease of an antenna bandwidth due to the reduced patch width is compensated by increasing the effective substrate thickness. A detection range and a detection probability is calculated from the measured gain at a given angle, and this result shows that the fabricated antenna can be applied well to this monopulse radar system.

A Design and Measurement of a Reference Signal Generator for a Radar System

  • Kim, Dong-Sik;Kim, Min-Chul;Lee, Su-Ho;Baik, Seung-Hun;Kwon, Ho-Sang;Jeong, Myung-Deuk
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.118-123
    • /
    • 2009
  • This paper discusses the design and fabrication of a reference signal generator for a naval radar system, including the vibration environment test. The transmit signals of the S-band radar system are synthesized by the reference signal and the phase noise must lower than - 130 dBc/Hz at a 10 kHz offset frequency. To achieve this specification, the phase noise of the reference signal needs to be less than -165 dBc/Hz at a 10 kHz offset. For achieving very low phase noise performance by the reference signal generator, the phase locked loop technique is applied with a 10 Hz loop bandwidth. Also, this reference signal generator has ${\pm}0.35\;ppb$ short-term stability to minimize instant phase errors and high vibration sensitivity against a ship's shaking, unbalanced rotating of antennas and so on.

Interference Analysis Between Fixed Wireless System and Radar Operating in VHF/UHF Bands with Geographic Information (지리정보에 기반한 VHF/UHF 대역의 고정무선시스템과 레이더 간의 간섭분석)

  • Suh, Kyoung-Whoan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.40-47
    • /
    • 2013
  • By virtue of Rec. ITU-R P.1546 and geography information system, interference analysis for the fixed wireless system and radar has been presented based upon the frequency-distance rules with minimum coupling loss, and a comprehensive methodology for assessing interoperability between systems was examined in terms of received signal, protection ratio, frequency dependent rejection. Also to find the antenna gain from a discrimination angle, a useful S-I plane was introduced based on signal and interference vectors derived from the real map with geographic information. To show some computational results, geography information on the map was taken for the given area, and field strength and path profile were illustrated for the radar and fixed wireless system operating at 2.7 GHz, for convenience. In addition the interference effect of receiver was also checked as a function of radar beam direction including protection ratio and frequency dependent rejection. The developed interference analysis can be actually applied to evaluate interoperability for wireless systems in the VHF and UHF bands.

The Application of Marine X-band Radar to Measure Wave Condition during Sea Trial

  • Park, Gun-Il;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun;Jang, Hyun-Sook;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.34-48
    • /
    • 2006
  • The visual observation of wave condition depends on the observer's skill and experience. Also, the environmental conditions such as light and cloud heavily influence the visual measurement. In the speed test of sea trial, the wave measurement should be objective and accurate. In this paper, the problems of visual measurement and their effects on speed test are described. To overcome those problems, we developed the wave measurement system using commercial marine X-band radar, WaveFinder. The system installed at inland base was calibrated by waverider buoy and then the system's operability was defined. Onboard tests had also been performed three times for formal wave measurement to correct the ship speed. The results illustrated very good agreement with visual observation by experts. It can be concluded that the system would be useful to measure wave and swell information for the sea trial, irrespective of day and night.

A Control Strategy of Auto-Leveling Equipment of Multi-Function Radar for Vehicle based on Embedded System Modeling

  • Byeol Han;Yushin Chang;Sungyong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents the control strategy of Auto-leveling equipment (ALE) of Multi-function radar (MFR) for vehicle using Embedded System. MFR implements surveillance patrol missions such as surface-to-air missiles and fighters with constant rotation. ALE consists of 4 Auto-leveling modules (ALM) and retains the stability with maintaining level. The gradient of vehicle can be measured and controlled by embedded systems. This paper contributes for improvement the system design with the ALM 1 set modeling. The validity of the modeling is verified using MATLAB/Simulink.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

Design of a W-band Radiometer Simultaneously Operating with a Single-Antenna Configured FMCW Radar (단일 안테나를 사용하는 FMCW 레이더와 동시 운용이 가능한 W-대역 레디오미터 설계)

  • Jung Myung-Suk;Kim Wan-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.67-74
    • /
    • 2006
  • We present the design of a radiometer in W-band which operates simultaneously with a single antenna configured FMCW radar. We choose a total power radiometer(TPR) which shares an antenna and a front-end with the radar for miniaturizing the system. We separate the radiometer signal from the radar signal using a diplexer in IF band. Because the radiometer has an unwanted transmitter section due to the common use of the MMW front-end with the radar, some additional noise signals caused by the transmitter degrade the sensitivity of the radiometer system. To compensate the degradation of sensitivity, we use matching circuits and a diode detector configured as the voltage doubler. Through some experiments, we have verified that the designed radiometer system has good performances in detecting metal targets tying at several hundred meters.