• Title/Summary/Keyword: Radar data

Search Result 1,419, Processing Time 0.041 seconds

A Study on the Improvement of Collection, Management and Sharing of Maritime Traffic Information (해상교통정보의 수집, 관리 및 공유 개선방안에 관한 연구)

  • Shin, Gil-Ho;Song, Chae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.515-524
    • /
    • 2022
  • To effectively collect, manage, and share the maritime traffic information, it is necessary to identify the technology trends concerning this particular information and analyze its current status and problems. Therefore, this study observes the domestic and foreign technology trends involving maritime traffic information while analyzing and summarizing the current status and problems in collecting, managing, and sharing it. According to the data analysis, the problems in the collecting stage are difficulties in collecting visual information from long-distance radars, CCTVs, and cameras in areas outside the LTE network coverage. Notably, this explains the challenges in detecting smuggling ships entering the territorial waters through the exclusive economic zone (EEZ) in the early stage. The problems in the management stage include difficult reductions and expansions of maritime traffic information caused by the lack of flexibility in storage spaces mostly constructed by the maritime transportation system. Additionally, it is challenging to deal with system failure with system redundancy and backup as a countermeasure. Furthermore, the problems in the sharing stage show that it is difficult to share information with external operating organizations since the internal network is mainly used to share maritime transportation information. If at all through the government cloud via platforms such as LRIT and SASS, it often fails to effectively provide various S/W applications that help use maritime big data. Therefore, it is suggested that collecting equipment such as unmanned aerial vehicles and satellites should be constructed to expand collecting areas in the collecting stage. In the management and sharing stages, the introduction and construction of private clouds are suggested, considering the operational administration and information disclosure of each maritime transportation system. Through these efforts, an enhancement of the expertise and security of clouds is expected.

Estimation of Soil Moisture Content from Backscattering Coefficients Using a Radar Scatterometer (레이더 산란계 후방산란계수를 이용한 토양수분함량 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Jae-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2012
  • Microwave remote sensing can help monitor the land surface water cycle, crop growth and soil moisture. A ground-based polarimetric scatterometer has an advantage for continuous crop using multi-polarization and multi-frequencies and various incident angles have been used extensively in a frequency range expanding from L-band to Ka-band. In this study, we analyzed the relationships between L-, C- and X-band signatures and soil moisture content over the whole soybean growth period. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. L-band backscattering coefficients were higher than those observed using C- or X-band over the period. Backscattering coefficients for all frequencies and polarizations increased until Day Of Year (DOY) 271 and then decreased until harvesting stage (DOY 294). Time serious of soil moisture content was not a corresponding with backscattering over the whole growth stage, although it increased relatively until early August (R2, DOY 224). We conducted the relationship between the backscattering coefficients of each band and soil moisture content. Backscattering coefficients for all frequencies were not correlated with soil moisture content when considered over the entire stage ($r{\leq}0.50$). However, we found that L-band HH polarization was correlated with soil moisture content (r=0.90) when Leaf Area Index (LAI)<2. Retrieval equations were developed for estimating soil moisture content using L-band HH polarization. Relation between L-HH and soil moisture shows exponential pattern and highly related with soil moisture content ($R^2=0.92$). Results from this study show that backscattering coefficients of radar scatterometer appear effective to estimate soil moisture content.

The Simulation for the Organization of Fishing Vessel Control System in Fishing Ground (어장에 있어서의 어선관제시스템 구축을 위한 모의실험)

  • 배문기;신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.175-185
    • /
    • 2000
  • This paper described on a basic study to organize fishing vessel control system in order to control efficiently fishing vessel in Korean offshore. It was digitalized ARPA image on the fishing processing of a fleet of purse seiner in conducting fishing operation at Cheju offshore in Korea as a digital camera and then simulated by used VTMS. Futhermore, it was investigated on the application of FVTMS which can control efficiently fishing vessels in fishing ground. The results obtained were as follows ; (1) It was taken 16 minutes and 35 minutes to casting and hauling net in fishing processing respectively. The length of rope pulled by scout boat was 200m, tactical diameter in casting net was 340.8m, turning speed was 6kts as well. (2) The processing of casting and hauling net was moved to SW, NE as results of simulation when the current direction and speed set into NE, 2kts and SW, 2kts respectively. Such as these results suggest that can predict to control the fishing vessel previously with information of fishing ground, fishery and ship's maneuvering, etc. (3) The control range of VTMS radar used in simulation was about 16 miles. Although converting from a radar of the control vessel to another one, it was continuously acquired for the vector and the target data. The optimum control position could be determined by measuring and analyzing to distance and direction between the control vessel and the fleet of fishing vessel. (4) The FVTMS(fishing vessel traffic management services) model was suggested that fishing vessels received fishing conditions and safety navigation information can operate safely and efficiently.

  • PDF

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer (L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer ($20\;MHz{\sim}20\;GHz$), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ with $5^{\circ}$ interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-June) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-July). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-Aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized ${\sigma}^{\circ}$ steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage.

Analysis of Surface Displacement of Oil Sands Region in Alberta, Canada Using Sentinel-1 SAR Time Series Images (Sentinel-1 SAR 시계열 영상을 이용한 캐나다 앨버타 오일샌드 지역의 지표변위 분석)

  • Kim, Taewook;Han, Hyangsun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • SAGD (Steam-Assisted Gravity Drainage) method is widely used for oil recovery in oil sands regions. The SAGD operation causes surface displacement, which can affect the stability of oil recovery plants and trigger various geological disasters. Therefore, it isimportant to monitor the surface displacement due to SAGD in the oil sands region. In this study, the surface displacement due to SAGD operations of the Athabasca oil sands region in Alberta, Canada, was observed by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) technique to the Sentinel-1 time series SAR data acquired from 2016 to 2021. We also investigated the construction and expansion of SAGD facilitiesfrom Landsat-7/8 time seriesimages, from which the characteristics of the surface displacement according to the oil production activity of SAGD were analyzed. Uplift rates of 0.3-2.5 cm/yr in the direction of line of sight were observed over the SAGDs and their vicinity, whereas subsidence rates of -0.3--0.6 cm/yr were observed in areas more than several kilometers away from the SAGDs and not affected by oil recovery activities. Through the analysis of Landsat-7/8 images, we could confirm that the SAGDs operating after 2012 and showing high oil production activity caused uplift rates greater than 1.6 cm/yr due to the subsurface steam injection. Meanwhile, very small uplift rates of several mm per year occurred over SAGDs which have been operated for a longer period of time and show relatively low oil production activity. This was probably due to the compression of reservoir sandstone due to continuous oil recovery. The subsidence observed in areas except for the SAGDs and their vicinity estimated to be a gradual land subsidence caused by melting of the permafrost. Considering the subsidence, it was expected that the uplift due to SAGD operation would be greater than that observed by the PSInSAR. The results of this study confirm that the PSInSAR can be used as an effective means for evaluating productivity and stability of SAGD in the extreme cold regions.

An Artificial Intelligence Approach to Waterbody Detection of the Agricultural Reservoirs in South Korea Using Sentinel-1 SAR Images (Sentinel-1 SAR 영상과 AI 기법을 이용한 국내 중소규모 농업저수지의 수표면적 산출)

  • Choi, Soyeon;Youn, Youjeong;Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Lee, Seulchan;Choi, Minha;Jeong, Hagyu;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.925-938
    • /
    • 2022
  • Agricultural reservoirs are an important water resource nationwide and vulnerable to abnormal climate effects such as drought caused by climate change. Therefore, it is required enhanced management for appropriate operation. Although water-level tracking is necessary through continuous monitoring, it is challenging to measure and observe on-site due to practical problems. This study presents an objective comparison between multiple AI models for water-body extraction using radar images that have the advantages of wide coverage, and frequent revisit time. The proposed methods in this study used Sentinel-1 Synthetic Aperture Radar (SAR) images, and unlike common methods of water extraction based on optical images, they are suitable for long-term monitoring because they are less affected by the weather conditions. We built four AI models such as Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Automated Machine Learning (AutoML) using drone images, sentinel-1 SAR and DSM data. There are total of 22 reservoirs of less than 1 million tons for the study, including small and medium-sized reservoirs with an effective storage capacity of less than 300,000 tons. 45 images from 22 reservoirs were used for model training and verification, and the results show that the AutoML model was 0.01 to 0.03 better in the water Intersection over Union (IoU) than the other three models, with Accuracy=0.92 and mIoU=0.81 in a test. As the result, AutoML performed as well as the classical machine learning methods and it is expected that the applicability of the water-body extraction technique by AutoML to monitor reservoirs automatically.

Estimation of spatial distribution of snow depth using DInSAR of Sentinel-1 SAR satellite images (Sentinel-1 SAR 위성영상의 위상차분간섭기법(DInSAR)을 이용한 적설심의 공간분포 추정)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1125-1135
    • /
    • 2022
  • Damages by heavy snow does not occur very often, but when it does, it causes damage to a wide area. To mitigate snow damage, it is necessary to know, in advance, the depth of snow that causes damage in each region. However, snow depths are measured at observatory locations, and it is difficult to understand the spatial distribution of snow depth that causes damage in a region. To understand the spatial distribution of snow depth, the point measurements are interpolated. However, estimating spatial distribution of snow depth is not easy when the number of measured snow depth is small and topographical characteristics such as altitude are not similar. To overcome this limit, satellite images such as Synthetic Aperture Radar (SAR) can be analyzed using Differential Interferometric SAR (DInSAR) method. DInSAR uses two different SAR images measured at two different times, and is generally used to track minor changes in topography. In this study, the spatial distribution of snow depth was estimated by DInSAR analysis using dual polarimetric IW mode C-band SAR data of Sentinel-1B satellite operated by the European Space Agency (ESA). In addition, snow depth was estimated using geostationary satellite Chollian-2 (GK-2A) to compare with the snow depth from DInSAR method. As a result, the accuracy of snow cover estimation in terms with grids was about 0.92% for DInSAR and about 0.71% for GK-2A, indicating high applicability of DInSAR method. Although there were cases of overestimation of the snow depth, sufficient information was provided for estimating the spatial distribution of the snow depth. And this will be helpful in understanding regional damage-causing snow depth.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Three dimensional GPR survey for the exploration of old remains at Buyeo area (부여지역 유적지 발굴을 위한 3차원 GPR 탐사)

  • Kim Jung-Bo;Son Jeong-Sul;Yi Myeong-Jong;Lim Seong-Keun;Cho Seong-Jun;Jeong Ji-Min;Park Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.49-69
    • /
    • 2004
  • One of the important roles of geophysical exploration in archeological survey may be to provide the subsurface information for effective and systematic excavations of historical remains. Ground Penetrating Radar (GPA) can give us images of shallow subsurface structure with high resolution and is regarded as a useful and important technology in archeological exploration. Since the buried cultural relics are the three-dimensional (3-D) objects in nature, the 3-D or areal survey is more desirable in archeological exploration. 3-D GPR survey based on the very dense data in principle, however, might need much higher cost and longer time of exploration than the other geophysical methods, thus it could have not been applied to the wide area exploration as one of routine procedures. Therefore, it is important to develop an effective way of 3-D GPR survey. In this study, we applied 3-D GPR method to investigate the possible historical remains of Baekje Kingdom at Gatap-Ri, Buyeo city, prior to the excavation. The principal purpose of the investigation was to provide the subsurface images of high resolution for the excavation of the surveyed area. Besides this, another purpose was to investigate the applicability and effectiveness of the continuous data acquisition system which was newly devised for the archeological investigation. The system consists of two sets of GPR antennas and the precise measurement device tracking the path of GPR antenna movement automatically and continuously Besides this hardware system, we adopted a concept of data acquisition that the data were acquired arbitrary not along the pre-established profile lines, because establishing the many profile lines itself would make the field work much longer, which results in the higher cost of field work. Owing to the newly devised system, we could acquire 3-D GPR data of an wide area over about $17,000 m^2$ as a result of the just two-days field work. Although the 3-D GPR data were gathered randomly not along the pre-established profile lines, we could have the 3-D images with high resolution showing many distinctive anomalies which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This case history led us to the conclusion that 3-D GPR method can be used easily not only to examine a small anomalous area but also to investigate the wider region of archeological interests. We expect that the 3-D GPR method will be applied as a one of standard exploration procedures to the exploration of historical remains in Korea in the near future.

  • PDF

Effective Geophysical Methods in Detecting Subsurface Caves: On the Case of Manjang Cave, Cheju Island (지하 동굴 탐지에 효율적인 지구물리탐사기법 연구: 제주도 만장굴을 대상으로)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Lee, Gyu-Ho;Rim, Hyoung-Rea;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.408-422
    • /
    • 2000
  • Multiple geophysical methods were applied over the Manjang cave area in Cheju Island to compare and contrast the effectiveness of each method for exploration of underground cavities. The used methods are gravity, magnetic, electrical resistivity and GPR(Ground Pentrating Radar) survey, of which instruments are portable and operations are relatively economical. We have chosen seven survey lines and applied appropriate multiple surveys depending on the field conditions. In the case of magnetic method. two-dimensional grid-type surveys were carried out to cover the survey area. The geophysical survey results reveal the characteristic responses of each method relatively well. Among the applied methods, the electric resistivity methods appeared to be the most effective ones in detecting the Manjang Cave and surrounding miscellaneous cavities. Especially, on the inverted resistivity section obtained from the dipole-dipole array data, the two-dimensional distribution of high resistivity cavities are revealed well. The gravity and magnetic data are contaminated easily by various noises and do not show the definitive responses enough to locate and delineate the Manjang cave. But they provide useful information in verifying the dipole-dipole resistivity survey results. The grid-type 2-D magnetic survey data show the trend of cave development well, and it may be used as a reconnaissance regional survey for determining survey lines for further detailed explorations. The GPR data show very sensitive response to the various shallow volcanic structures such as thin spaces between lava flows and small cavities, so we cannot identify the response of the main cave. Although each geophysical method provides its own useful information, the integrated interpretation of multiple survey data is most effective for investigation of the underground caves.

  • PDF