• Title/Summary/Keyword: Radar Simulation System

Search Result 261, Processing Time 0.027 seconds

SAR Image Impulse Response Analysis in Real Clutter Background (실제 클러터 배경에서 SAR 영상 임펄스 응답 특성 분석)

  • Jung, Chul-Ho;Jung, Jae-Hoon;Oh, Tae-Bong;Kwang, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • A synthetic aperture radar (SAR) system is of great interest in many fields of civil and military applications because of all-weather and luminance free imaging capability. SAR image quality parameters such as spatial resolution, peak to sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) can be normally estimated by modeling of impulse response function (IRF) which is obtained from various system design parameters such as altitude, operational frequency, PRF, etc. In modeling of IRF, however, background clutter environment surrounding the IRF is generally neglected. In this paper, analysis method for SAR mage quality is proposed in the real background clutter environment. First of all, SAR raw data of a point scatterer is generated based on various system parameters. Secondly, the generated raw data can be focused to ideal IRF by range Doppler algorithm (RDA). Finally, background clutter obtained from image of currently operating SAR system is applied to IRF. In addition, image quality is precisely analyzed by zooming and interpolation method for effective extraction of IRF, and then the effect of proposed methodology is presented with several simulation results under the assumption of estimation error of Doppler rate.

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

Modeling the Impacts of Increased Urbanization on Local Meteorology in the Greater Seoul Area (수도권지역 도시화가 국지기상에 미치는 영향 모델링)

  • Kang, Yoon-Hee;Kim, Yoo-Keun;Oh, In-Bo;Hwang, Mi-Kyoung;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1361-1374
    • /
    • 2010
  • The impact of urbanization on local meteorology (e.g., surface temperature, PBL height, wind speed, etc.) in the Greater Seoul Area (GSA) was quantitatively evaluated based on a numerical modeling approach during a 1-month period of 2001 (9 Sep. through 8 Oct. 2001). The analysis was carried out by two sets of simulation scenarios: (1) with the global land use and topographic data from the U.S. Geological Survey (USGS) in 1990s (i.e., LU-USGS case) and (2) with the land use data from the Environmental Geographic Information System (EGIS) along with the 3 sec elevation data from the Shuttle Radar Topography Mission (SRTM) in 2000s (i.e., LU-EGIS case). The extension of urban areas in the GSA (especially, the southern parts of Seoul) accounted for 1.8% in the LU-USGS case and 6.2% in the LU-EGIS case. For the simulations, the surface temperature and PBL height due to urbanization in the LU-EGIS case was higher (the differences of up to $0.1^{\circ}C$ and 36 m, respectively) than those in the LU-USGS case, whereas the wind speed (up to 0.3 $ms^{-1}$) in the former was lower than that in the latter at 1500 LST. The increase in surface temperature due to urbanization in the GSA (especially, the southern parts of Seoul) was led to the strong convergence of air masses, causing the early sea breeze and its rapid propagation to inland locations. In addition, the vertical mixing motion in the extended urban areas for the LU-EGIS case was predicted to be stronger than that for the LU-USGS case and vice versa for the original urban areas.

Performance of a Beamforming based RFID System for Velocity Estimation (속도 추정용 빔포밍 기반 RFID 시스템 성능 분석)

  • Jeon, Seong-ha;Jeon, Hyeon-mu;Yang, Hoon-gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1925-1933
    • /
    • 2015
  • RFID based applications that combine radar techniques to obtain the location and the ID of a tag have widely been investigated. In this paper, we analyze a recently proposed RFID system that can extract the tag IDs and their velocities using signals transmitted from the tag attached moving objects and verify its performance. In the proposed system, a beacon transmits triggering signal at regular intervals into a monitoring area and the tag receiving the triggering signal backscatters the FMCW(frequency modulation continuous wave) signal modulated by the tag ID. The reader system demodulates this FMCW signal using predefined two reference signals to obtain not only the tag ID but its velocity. In this paper, we show that the proposed system works properly and analyze the degree of performance degradation in cases when the synchronization error between the transmitting signal and the reference signal occurs, and even when sampling rate is lowered for implementation purpose. Finally, the analytical results are verified by simulation.

Analysis of SAR Processing Performances with FJB Waveforms (FJB 파형을 이용한 SAR 영상 생성 기법 분석)

  • Kim, Eun-Hee;Roh, Ji-Eun;Park, Joon-Yong;Kim, Soo-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.195-207
    • /
    • 2017
  • Recently, the SAR-GMTI mode is becoming increasingly essential in airborne radar systems. While SAR requires wideband waveforms for high resolution imaging, GMTI requires narrowband waveforms for doppler processing, which makes general LFM waveforms difficult to use for SAR-GMTI. This paper analyses the FJB(Frequency Jump Burst) waveform, which is studied for the SAR-GMTI waveform, and presents the method for the pulse compression and SAR image formation using FJB waveforms. Simulation results show that there is little difference in performances between the FJB waveform and the LFM waveform.

Design of a Multi-Sensor Data Simulator and Development of Data Fusion Algorithm (다중센서자료 시뮬레이터 설계 및 자료융합 알고리듬 개발)

  • Lee, Yong-Jae;Lee, Ja-Seong;Go, Seon-Jun;Song, Jong-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.93-100
    • /
    • 2006
  • This paper presents a multi-sensor data simulator and a data fusion algorithm for tracking high dynamic flight target from Radar and Telemetry System. The designed simulator generates time-asynchronous multiple sensor data with different data rates and communication delays. Measurement noises are incorporated by using realistic sensor models. The proposed fusion algorithm is designed by a 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad data and sensor faults. The designed algorithm is verified by using both simulation data and actual real data.

A Study on Detecting Optimal Corner Points using Morphology and Human Visual Concept (수리 형태학과 인간의 시각적 개념을 이용한 최적의 코너 점 추출을 위한 연구)

  • Jeong, Gi-Ryong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.233-238
    • /
    • 2004
  • Comer point is a very important information to a pattern recognition of image processing. And so, many researchers develope various detecting comer point algoritms. But, there are some problems to get comer points by 8 directional chain code when the degree of edge line is not integer multiplication of 45 degree. So, we propose a new algorithm which is combined with morphology and human visual conception for optimal comer points without the above defects. We get a good simulation result by this proposed algorithm Ana so, we think this algorithm is very useful to FA(factory automation} and ship's radar system to know some coastal area from its image.

A Study on Target Incident Signal Estimaion Technique of spatial Spectrum in Wireless Network System (공간 영역 신호에서 다중 빔 형성을 이용한 목표물 추정 방법에 대한 연구)

  • Lee, Kwan-Hyeong;Song, Woo-Young;Lee, Myeong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.137-142
    • /
    • 2013
  • Direction of arrival is estimating for desire signal direction among received signal on antenna in spatial. In this paper, we were an estimation a receiving signal direction of arrival using multi beam forming in radar. We proposed, by signal direction of arrival estimation method, an algorithm which combine spatial correlation matrix weight value and beam steering algorithm in this paper. Through simulation, we were analysis a performance to compare general algorithm and proposal algorithm. In direction of arrival estimation, proposed algorithm is effectivity to decrease processing time because it is not doing an eigen decomposition. We showed that proposal algorithm improve more target estimation than general algorithm.

Performance Analysis of DCMP and ZF based on Spatial Channel Response Estimation by ESPRIT (ESPRIT에 의한 공간 채널응답 추정치에 기초를 둔 방향구속 전력 최소화법과 제로포싱 알고리즘의 성능평가)

  • 정중식;임정빈;안영섭
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.169-174
    • /
    • 2002
  • It has known that the DCMP(Directionally Constrained Minimization of power)and the ZF(Zero Forcing) can improve the SINR performance of an array antenna system by using spatial signature of wireless channel. This paper analyzes performance of DCMP and ZF in multiple scattering environments. To obtain the spatial signature of wireless channel. bothe DOA(Directional of Arrival) and AS(Angular Spread) of the received signals were estimated by using ESPRIT. The performance of the DCMP and the ZF was analyzed theoretically. Through computer simulation, the SINR performance were evaluated.

  • PDF

Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • The Baekdu volcano (2,750 m a.s.l.) is located on the border between Yanggando Province in North Korea and Jilin Province in China. Its eruption in 946 A.D. was among the largest and most violent eruptions in the past 5,000 years, with a volcanic explosivity index (VEI) of 7. In this study, we processed and analyzed lahar-inundation hazard zone data, applying a geographic information system program with menu-driven software (LAHARZ)to a shuttle radar topography mission 30 m digital elevation model. LAHARZ can simulate inundation hazard zones created by large lahar flows that originate on volcano flanks using simple input parameters. The LAHARZ is useful both for mapping hazard zones and estimating the extent of damage due to active volcanic eruption. These results can be used to establish evacuation plans for nearby residents without field survey data. We applied two different simulation methods in LAHARZ to examine six water systems near Baekdu volcano, selecting weighting factors by varying the ratio of height and distance. There was a slight difference between uniform and non-uniform ratio changes in the lahar-inundation hazard zone maps, particularly as slopes changed on the east and west sides of the Baekdu volcano. This result can be used to improve monitoring of volcanic eruption hazard zones and prevent disasters due to large lahar flows.