• Title/Summary/Keyword: Radar Signal Model

Search Result 104, Processing Time 0.025 seconds

Analysis of the ES detection loss related to the circular scan of radars (레이더의 원형 스캔에 따른 ES 탐지손실 분석)

  • Ryoo, Young-Jin;Kim, Whan-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.159-166
    • /
    • 2005
  • The pulse amplitude of a search radar signal received by an ES system is not constant pulse by pulse because of the radar's scan characteristics. The variation of the pulse amplitude causes the ES detection loss in the ES system. Therefore, the ES detection range equation should consider the ES detection loss caused by the search radar's scan characteristics. In this paper, we theoretically analyze the ES detection loss for the circular scar and propose the model to evaluate it quantitatively. The experiment results for the real search radar signals demonstrate that the proposed model is suitable for the evaluation model of the ES detection loss related to the circular scan of radars.

Modeling of Received Radar Signals for Scan Pattern Analysis (스캔패턴 분석을 위한 레이더 수신신호 모델링)

  • Kim, Yong-Hee;Kim, Wan-Jin;Song, Kyu-Ha;Lee, Dong-Won;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.73-85
    • /
    • 2010
  • In dense electronic warfare signal environments, the conventional radar identification methods based on the basic parameters such as frequency, pulse width, and pulse repetition interval are confronted by the problem of identification ambiguity. To overcome this critical problem, a new approach introducing scan pattern of radars has been presented. Researches on new identification methods, however, suffer from a practical problem that it is not easy to secure the many radar signals including various scan pattern information and operation parameters. This paper presents a modeling method of radar signals with which we can generate radar signals including various scan pattern types according to the parameters determining the variation pattern of received signal strength. In addition, with the radar signals generated by the proposed model we analyze their characteristics according to the location of an electronic warfare support (ES) system.

Design and Development of 200 W TRM on-board for NEXTSat-2 X-band SAR (차세대소형위성2호의 X대역 합성 개구 레이더 탑재를 위한 200 W급 송·수신 모듈의 설계 및 개발)

  • Jeeheung Kim;Hyuntae Choi;Jungsu Lee;Tae Seong Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.487-495
    • /
    • 2022
  • This paper describes the design and development of a high-power transmit receive module(TRM) for mounting on X-band synthetic aperture radar(SAR) of the NEXTSat-2. The TRM generates a high-power pulse signal with a bandwidth of 100 MHz in the target frequency range of X-band and amplifies a low-noise on the received signal. Tx. path of the TRM has output signal level of more than 200 watts (53.01 dB), pulse droop of 0.35 dB, signal strength change of 0.04 dB during transmission signal output, and phase change of 1.7 ˚. Rx. path has noise figure of 3.99 dB and gain of 37.38 ~ 37.46 dB. It was confirmed the TRM satisfies all requirements. The TRM mounted on the NEXTSat-2 flight model(FM) which will be launched using the KSLV-II (Nuri).

Modeling and Analysis of Radar Target Signatures in the VHF-Band Using Fast Chirplet Decomposition (고속 Chirplet 분리기법을 이용한 VHF 대역 레이더 표적신호 모델링 및 해석)

  • Park, Ji-hoon;Kim, Si-ho;Chae, Dae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Although radar target signatures(RTS), such as range profiles have played an important role for target recognition in the X-band radar, they would be less effective when a target is designed to have low radar cross section(RCS). Recently, a number of research groups have conducted the studies on the RTS in the VHF-band where such targets can be better detected than in the X-band. However, there is a lack of work carried out on the mathematical description of the VHF-band RTS. In this paper, chirplet decomposition is employed for modeling of the VHF-band RTS and its performance is compared with that of existing scattering center model generally used for the X-band. In addition, the discriminative signal analysis is performed by chirplet parameterization of range profiles from in an ISAR image. Because the chirplet decomposition takes long computation time, its fast form is further proposed for enhanced practicality.

Prediction of Jamming Techniques by Using LSTM (LSTM을 이용한 재밍 기법 예측)

  • Lee, Gyeong-Hoon;Jo, Jeil;Park, Cheong Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.278-286
    • /
    • 2019
  • Conventional methods for selecting jamming techniques in electronic warfare are based on libraries in which a list of jamming techniques for radar signals is recorded. However, the choice of jamming techniques by the library is limited when modified signals are received. In this paper, we propose a method to predict the jamming technique for radar signals by using deep learning methods. Long short-term memory(LSTM) is a deep running method which is effective for learning the time dependent relationship in sequential data. In order to determine the optimal LSTM model structure for jamming technique prediction, we test the learning parameter values that should be selected, such as the number of LSTM layers, the number of fully-connected layers, optimization methods, the size of the mini batch, and dropout ratio. Experimental results demonstrate the competent performance of the LSTM model in predicting the jamming technique for radar signals.

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

Input Signal Model Analysis for Adaptive Beamformer (적응 빔형성기의 입력신호 모델 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.433-438
    • /
    • 2017
  • Containing an Angle-of-Arrival(: AOA) estimation and interference suppression techniques, an adaptive beamformer is one of core techniques for the Signal Intelligence(: SIGINT) which collect various intelligence utilizing cutting edge devices including the radar and satellite. It generates a beam with the directivity in a corresponding direction, to efficiently receive a signal from the specific direction, using antenna array. In this paper, we present the received signal model including interference signals and noise, which can be applied to an input of the signal intelligence satellite system equipped with the AOA estimation and the interference cancellation techniques, and analysis the characteristics of various signals, which can be included in the proposed received signal model. This proposed signal model can be directly applied to the performance evaluation for a variety of beamforming techniques. Also, we verify the spectrum characteristic of the presented received signal model in the frequency domain through computer simulation examples.

Noise Removal of Radar Image Using Image Inpainting (이미지 인페인팅을 활용한 레이다 이미지 노이즈 제거)

  • Jeon, Dongmin;Oh, Sang-jin;Lim, Chaeog;Shin, Sung-chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.118-124
    • /
    • 2022
  • Marine environment analysis and ship motion prediction during ship navigation are important technologies for safe and economical operation of autonomous ships. As a marine environment analysis technology, there is a method of analyzing waves by measuring the sea states through images acquired based on radar(radio detection and ranging) signal. However, in the process of deriving marine environment information from radar images, noises generated by external factors are included, limiting the interpretation of the marine environment. Therefore, image processing for noise removal is required. In this study, image inpainting by partial convolutional neural network model is proposed as a method to remove noises and reconstruct radar images.

A Mitigation of Multipath Ranging Error Using Non-linear Chirp Signal

  • Kim, Jin-Ik;Heo, Moon-Beom;Jee, Gyu-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.658-665
    • /
    • 2013
  • While the chirp signal is extensively used in radar and sonar systems for target decision in wireless communication systems, it has not been widely used for positioning in indoor environments. Recently, the IEEE 802.15.4a standard has adopted the chirp spread spectrum (CSS) as an underlying technique for low-power and low-complexity precise localization. Chirp signal based ranging solutions have been established and deployed but their ranging performance has not been analyzed in multipath environments. This paper presents a ranging performance analysis of a chirp signal and suggests a method to suppress multipath error by using a type of non-linear chirp signal. Multipath ranging performance is evaluated using a conventional linear chirp signal and the proposed non-linear chirp signal. We verify the feasibility of both methods using two-ray multipath model simulation. Our results demonstrate that the proposed non-linear chirp signal can successfully suppress the multipath error.

Detection of Low-RCS Targets in Sea-Clutter using Multi-Function Radar (다기능 레이다를 이용한 저 RCS 해상표적 탐지성능 분석)

  • Lee, Myung-Jun;Kim, Ji-eun;Lee, Sang-Min;Jeon, Hyeon-Mu;Yang, Woo-Yong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.507-517
    • /
    • 2019
  • Multi-function radar(MFR) is a system that uses various functions such as detection, tracking, and classification. To operate the functions in real-time, the detection stage in MFR usually uses radar signals for short measurement time. We can utilize several conventional detectors in the MFR system to detect low radar cross section maritime targets in the sea-clutter; however, the detectors, which have been developed to be effective for radar signals measured for a longer time, may be inappropriate for MFR. In this study, we proposed a modelling technique of sea-clutter short measurement time. We combined the modeled sea-clutter signal with the maritime-target signal, which was obtained by the numerical analysis method. Using this combined model, we exploited four independent detectors and analyzed the detection performances.