• Title/Summary/Keyword: Radar Scheduling

Search Result 15, Processing Time 0.022 seconds

Differential Choice of Radar Beam Scheduling Algorithm According to Radar Load Status (레이더의 부하 상태에 따른 빔 스케줄링 알고리즘의 선택적 적용)

  • Roh, Ji-Eun;Kim, Dong-Hwan;Kim, Seon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.322-333
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, Radar Resource Management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed a rule-based scheduling algorithm and Simulated Annealing(SA) based scheduling algorithm, which are alternatively selected and applied to beam scheduler according radar load status in real-time. The performance of the proposed algorithm was evaluated on the multi-function radar scenario. As a result, we showed that our proposed algorithm can process a lot of beams at the right time with real time capability, compared with applying only rule-based scheduling algorithm. Additionally, we showed that the proposed algorithm can save scheduling time remarkably, compared with applying only SA-based scheduling algorithm.

Stochastic Radar Beam Scheduling Using Simulated Annealing (Simulated Annealing을 이용한 추계적 레이더 빔 스케줄링 알고리즘)

  • Roh, Ji-Eun;Ahn, Chang-Soo;Kim, Seon-Joo;Jang, Dae-Sung;Choi, Han-Lim
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.196-206
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability, compared with mechanically scanned array radar. AESA radar brings a new challenges, radar resource management(RRM), which is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed stochastic radar beam scheduling algorithm using simulated annealing(SA), and evaluated the performance on the multi-function radar scenario. As a result, we showed that our proposed algorithm is superior to previous dispatching rule based scheduling algorithm from the viewpoint of beam processing latency and the number of scheduled beams, with real time capability.

Multi-functional Fighter Radar Scheduling Method for Interleaved Mode Operation of Airborne and Ground Target (전투기탑재 다기능 레이다의 공대공 및 공대지 동시 운용 모드를 위한 스케줄링 기법)

  • Kim, Do-Un;Lee, Woo-Cheol;Choi, Han-Lim;Park, Joontae;Park, Junehyune;Seo, JeongJik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.581-588
    • /
    • 2021
  • This paper deals with a beam scheduling method in fighter interleaving mode. Not only the priority of tasks but also operational requirements that air-to-ground and air-to-air search tasks should be executed alternatively are established to maximize high-quality of situational awareness. We propose a real-time heuristic beam scheduling method that is advanced from WMDD to satisfies the requirements. The proposed scheduling method is implemented in a simulation environment resembling the task processing mechanism and measurement model of a radar. Performance improvement in terms of task delay time is observed.

Beam Scheduling Algorithm of Multi-Function AESA Radar Based on Dispatching Rules (Dispatching Rule에 기반한 능동 위상 배열 다기능 레이더의 빔 스케줄링 기법)

  • Roh, Ji-Eun;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability, compared with mechanically scanned array radar. AESA radar brings a new challenges, radar resource management(RRM), which is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed the several dispatching rules for radar beam scheduling, and compared the performance on the multi-function radar scenario. We also showed that the dispatching rule which differently applying SPF(Shortest Processing time First) and ERF(Earliest Request time First) according to beam processing latency is the most efficient.

Task Scheduling and Multiple Operation Analysis of Multi-Function Radars (다기능 레이더의 임무 스케줄링 및 복수 운용 개념 분석)

  • Jeong, Sun-Jo;Jang, Dae-Sung;Choi, Han-Lim;Yang, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.254-262
    • /
    • 2014
  • Radar task scheduling deals with the assignment of task to efficiently enhance the radar performance on the limited resource environment. In this paper, total weighted tardiness is adopted as the objective function of task scheduling in operation of multiple multi-function radars. To take into account real-time implementability, heuristic index-based methods are presented and investigated. Numerical simulations for generic search and track scenarios are performed to evaluate the proposed methods, in particular investigating the effectiveness of multi-radar operation concepts.

TB and Knapsack Based Improved Scheduling Techniques for Multi-Function Radar (TB와 냅색 기반의 향상된 다기능 레이다 스케줄링 기법)

  • Hwang, Min-Young;Yang, Woo-Young;Shin, Sang-Jin;Chun, Joohwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.976-985
    • /
    • 2018
  • Modern radars such as the phase array radar can handle various tasks by generating a beam from a phased array antenna. Radar can be used for miscellaneous applications such as surveillance, tracking, missile guidance etc. Previous radar systems could handle only one task at a time. As such, multiple radars were required to perform simultaneous tasks. Multi-function radars can perform many tasks using only one radar system. However, the radar's resources are limited in this instance. To efficiently utilize time, it is necessary to properly schedule tasks in the radar's timeline. In this report, we investigate the efficiency of different scheduling tasks.

Beam Scheduling and Task Design Method using TaP Algorithm at Multifunction Radar System (다기능 레이다 시스템에서 TaP(Time and Priority) 알고리즘을 이용한 빔 스케줄링 방안 및 Task 설계방법)

  • Cho, In-Cheol;Hyun, Jun-Seok;Yoo, Dong-Gil;Shon, Sung-Hwan;Cho, Won-Min;Song, Jun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • In the past, radars have been classified into fire control radars, detection radars, tracking radars, and image acquisition radars according to the characteristics of the mission. However, multi-function radars perform various tasks within a single system, such as target detection, tracking, identification friend or foe, jammer detection and response. Therefore, efficient resource management is essential to operate multi-function radars with limited resources. In particular, the target threat for tracking the detected target and the method of selecting the tracking cycle based on this is an important issue. If focus on tracking a threat target, Radar can't efficiently manage the targets detected in other areas, and if you focus on detection, tracking performance may decrease. Therefore, effective scheduling is essential. In this paper, we propose the TaP (Time and Priority) algorithm, which is a multi-functional radar scheduling scheme, and a software design method to construct it.

A Study on Design and Analysis of an Alert-Confirm Detection Method (Alert-Confirm 탐지 방식의 설계 및 성능 분석에 관한 연구)

  • Eunhee Kim;Hyunsu Oh;Sawon Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.140-146
    • /
    • 2024
  • Active electronically scanning antennas are faster and more flexible in beam-scheduling than mechanical antennas. Thus, they require an advanced resource management or detection methods to operate efficiently. In a surveillance radar performing periodic detection, alert-confirm detection is an excellent method to improve the cumulative detection probability by reducing the period while maintaining the detection probability. This paper proposes a design method for alert-confirm detection based on the parameters of the conventional design. We developed a simulator based on simulink@matworks and verified the result through Monte Carlo simulation.

Resource Allocation for Performance Optimization of Interleaved Mode in Airborne AESA Radar (항공기탑재 AESA 레이다의 동시운용모드 성능 최적화를 위한 자원 할당)

  • Yong-min Kim;Ji-eun Roh;Jin-Ju Won
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.540-545
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to have interleaved mode in modern airborne AESA radar which can maximize situational awareness capability. Interleaved mode provides two or more modes simultaneously, such as Air to Air mode and Sea Surface mode by time sharing technique. In this interleaved mode, performance degradation is inevitable, compared with single mode operation, and effective resource allocation is the key component for the success of interleaved mode. In this paper, we identified performance evaluation items for each mode to analyze interleaved mode performance and proposed effective resource allocation methodology to achieve graceful performance degradation of each mode, focusing on detection range. We also proposed beam scheduling techniques for interleaved mode.

An Efficient Algorithm to Minimize Total Error of the Imprecise Real Time Tasks with 0/1 Constraint (0/1 제약조건을 갖는 부정확한 실시간 태스크들의 총오류를 최소화시키는 효율적인 알고리즘)

  • Song, Gi-Hyeon
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.309-320
    • /
    • 2006
  • The imprecise real-time system provides flexibility in scheduling time-critical tasks. Most scheduling problems of satisfying both 0/1 constraint and timing constraints, while the total error is minimized, are NP-complete when the optional tasks have arbitrary processing times. Liu suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on uniprocessors for minimizing the total error. Song et al suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on multiprocessors for minimizing the total error. But, these algorithms are all off-line algorithms. In the online scheduling, NORA algorithm can find a schedule with the minimum total error for the imprecise online task system. In the NORA algorithm, the EDF strategy is adopted in the optional scheduling.<중략> The algorithm, proposed in this paper, can be applied to some applications efficiently such as radar tracking, image processing, missile control and so on.

  • PDF