• Title/Summary/Keyword: Radar Detection Probability

Search Result 86, Processing Time 0.022 seconds

Method on Radar deployment for Ballistic Missile Detection Probability Improvement (탄도미사일 탐지확률 향상을 위한 레이더 배치 방안)

  • Park, Tae-yong;Lim, Jae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.669-676
    • /
    • 2016
  • North Korea has various ballistic missiles from short range to long range such as inter continental ballistic missiles. Short range ballistic missiles such as SCUD series are threatening to Korea peninsula. Therefore Korea is constructing various missile defense systems to protect country. Parameters influencing the received power from the target to the radar are transmitting power, antenna gain, carrier frequency, RCS(Radar Cross Section) of target and distance from radar to target. Especially, RCS and distance from target are not radar performance defined parameters but external parameters. Therefore radar deployment position that large RCS can be observed and target to radar distance should be considered in parallel to improve target detection probability. In this paper, RCS pattern of SCUD-B ballistic missile is calculated, received power is analyzed based on radar deployment position during ballistic missile trajectory and methode for optimum radar deployment position to improve target detection probability is suggested.

The analysis of the detection probability of FMCW radar and implementation of signal processing part (차량용 FMCW 레이더의 탐지 성능 분석 및 신호처리부 개발)

  • Kim, Sang-Dong;Hyun, Eu-Gin;Lee, Jong-Hun;Choi, Jun-Hyeok;Park, Jung-Ho;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2628-2635
    • /
    • 2010
  • This paper analyzes the detection probability of FMCW (Frequency Modulated Continuous Wave) radar based on Doppler frequency and analog-digital converter bit and designs and implements signal processing part of FMCW radar. For performance evaluation, the FMCW radar system consists of a transmitted part and a received part and uses AWGN channel. The system model is verified through analysis and simulation. Frequency offset occurs in the received part caused by the mismatching between the received signal and the reference signal. In case of Doppler frequency less than about 38KHz, performance degradation of detection does not occur in FMCW radar with 75cm resolution The analog-digital converter needs at least 6 bit in order not to degrade the detection probability. And, we design and implement digital signal processing part based on DDS chip of digital transmitted signal generator for FMCW radar.

A Comparison on Coherent Integration and Non-coherent Integration to Estimate Detection Range about Radar Cross Section in Radar System (레이더 시스템에서 레이더 단면적에 따른 탐지 거리 추정을 위한 코히런트 집적과 비 코히런트 집적에 대한 비교)

  • Ham, Sung-min;Ga, Gwan-u;Lee, Kwan-hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • This paper comparatively analyze to integration case to have a influence detection range estimation about radar cross section in radar system. This paper estimate detection range used to probability of detection in radar equation that used to swerling case 1 in case of radar cross section is small and used to swerling case 3 in case of radar cross section is large. Through simulation, coherent integration and non-coherent integration about swerling case difference were comparatively analyzed. Through simulation, non-coherent integration case is outstanding detection range and we known that coherent integration don't suitable for detection range estimation.

Dwell Time Optimization of Alert-Confirm Detection for Active Phased Array Radars

  • Kim, Eun Hee;Park, JoonYong
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2019
  • Alert-confirm detection is a highly efficient method to improve phased array radar search performance. It comprises sequential detection in two steps: alert detection, in which a target is detected at a low detection threshold, and confirm detection, which is triggered by alert detection with a longer dwell time to minimize false alarms. This paper provides a design method for applying the alert-confirm detection to multifunctional radars. We find optimum dwell times and false alarm probabilities for each alert detection and confirm detection under the dual constraints of total false alarm probability and maximum allowable dwell time per position. These optimum values are expressed as a function of the mean new target appearance rate. The proposed alert-confirm detection increases the maximum detection range even with a shorter frame time than that of uniform scanning.

On Analysis Performance for Target Rage Detection Estimation of Radar Cross Section using Swerling Case (스웰링 경우를 이용한 레이더 단면적의 목표물 탐지 거리 추정 성능 분석)

  • Lee, Kwan-Hyeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.113-117
    • /
    • 2014
  • This paper comparatively analyze to integration case to have a influence detection range estimation about radar cross section in radar system. This paper estimate detection range used to probability of detection in radar equation that used to swerling case 1 in case of radar cross section is small and used to swerling case 3 in case of radar cross section is large. Through simulation, coherent integration and non-coherent integration about swerling case difference were comparatively analyzed. In the result of comparative analysis, non-coherent integration case is outstanding detection range and we known that coherent integration don't suitable for detection range estimation.

Naval ship's susceptibility assessment by the probabilistic density function

  • Kim, Kwang Sik;Hwang, Se Yun;Lee, Jang Hyun
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • The survivability of the naval ship is the capability of a warship to avoid or withstand a hostile environment. The survivability of the naval ship assessed by three categories (susceptibility, vulnerability and recoverability). The magnitude of susceptibility of a warship encountering with threat is dependent upon the attributes of detection equipment and weapon system. In this paper, as a part of a naval ship's survivability analysis, an assessment process model for the ship's susceptibility analysis technique is developed. Naval ship's survivability emphasizing the susceptibility is assessed by the probability of detection, and the probability of hit. Considering the radar cross section (RCS), the assessment procedure for the susceptibility is described. It's emphasizing the simplified calculation model based on the probability density function for probability of hit. Assuming the probability of hit given a both single-hit and multiple-hit, the susceptibility is accessed for a RCS and the hit probability for a rectangular target is applied for a given threat.

Rake-Based Cellular Radar Receiver Design for Moving Target Detection in Multipath Channel

  • Kim, Yeejung;Jeong, Myungdeuk;Han, Youngnam
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.799-807
    • /
    • 2014
  • In this paper, we design a rake-based cellular radar receiver (CRR) scheme to detect a moving target located in a multipath environment. The modules of Doppler filter banks, threshold level test, and target detection module are newly introduced into the conventional rake receiver so that it can function as a radar system. The proposed CRR tests the Doppler-shift frequency and signal-to-noise ratio of the received signal against predefined threshold levels to determine detection and then calculates target velocities and ranges. The system performance is evaluated in terms of detection probability and the maximum detection range under a Nakagami-n channel that reflects the multipath environment.

Architecture of Signal Processing Module for Multi-Target Detection in Automotive FMCW Radar (차량용 FMCW 레이더의 다중 타겟 검출을 위한 신호처리부 구조 제안)

  • Hyun, EuGin;Oh, WooJin;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.93-102
    • /
    • 2010
  • The FMCW(Frequency Modulation Continuous Wave) radar possesses range-velocity ambiguity to identify the correct combination of beat frequencies for each target in the multi-target situation. It can lead to ghost targets and missing targets, and it can reduce the detection probability. In this pap er, we propose an effective identification algorithm for the correct pairs of beat frequencies and the signal processing hardware architecture to effectively support the algorithm. First, using the correlation of the detected up- and down-beat frequencies and Doppler frequencies, the possible combinations are determined. Then, final pairing algorithm is completed with the power spectrum density of the correlated up- and down-beat frequencies. The proposed hardware processor has the basic architecture consisting of beat-frequency registers, pairing table memory, and decision unit. This method will be useful to improve the radar detection probability and reduce the false alarm rate.

Cavity-Backed Microstrip Antenna for a Monopulse Radar (모노펄스 레이다용 Cavity-Backed 마이크로스트립 안테나 개발)

  • 박종국;나형기;구연덕;이종민
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.96-103
    • /
    • 2003
  • A cavity-backed microstrip patch antenna for a monopulse radar system is designed and fabricated. Also, this antenna is shown to be suitable for the system by analyzing the measured results. Since the azimuthal beamwidth required by this system is quite broad compared to that of a usual microstrip antenna, the width of a microstrip patch is reduced considerably. The decrease of an antenna bandwidth due to the reduced patch width is compensated by increasing the effective substrate thickness. A detection range and a detection probability is calculated from the measured gain at a given angle, and this result shows that the fabricated antenna can be applied well to this monopulse radar system.

Study on the Radar Detection Probability Change Considering Environmental Attenuation Factor (환경감쇠인자를 고려한 레이더 탐지 확률 변화에 관한 연구)

  • Kim, Young-Woong;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.23-28
    • /
    • 2015
  • The detection field is an important sector of the factors influencing the battle field. Basically, The radar emits a radio wave to perform the detection in the existing way. However, When most existing radars identify target by signal processing to return radio wave, Environmental attenuation factor does not reflected. The radar using this radio wave has got the possibility changing detect result depending on attenuation factor by environmental conditions, The operational problems may arise in a real battle field. Therefore, In this paper, When emitted radio waves were come back, Reflecting the environmental attenuation factor, Experimental attempts to identify the target to enable more accurately.