• Title/Summary/Keyword: Radar Data

Search Result 1,419, Processing Time 0.043 seconds

Data Processing Method of Radar Processor Unit Test Equipment (레이다처리장치 시험장비의 데이터 처리방안)

  • Lee, Mincheol;Kim, Yong-min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.767-775
    • /
    • 2018
  • To develop and check a Radar Processor Unit, checking the function and performance of the requirement is very important factor in developing Radar. General methods for verifying the Radar is simulation test, environment linkage test and field operation test, firstly, in case of requirement analysis phase, verify Radar algorithm and design by using mathematical method based simulation test method, and secondly, in case of unit test and integrated test phase, Test Equipment is set to simulate radar environment in the lab to verify radar function and performance. Lastly, field operation test phase is carried out to confirm the function and performance after it is mounted on the actual equipment. To successfully develop Radar Processor Unit, using the method of field operation test method after sufficient test cases are tested in radar environmental interlocking method in order to save cost and testing period and because of this reason, development of the Radar Processor Unit Test Equipment is becoming very important factor. In this paper, we introduce the concept of test equipment development and important factors in test equipment, which are target simulation, data processing and device interlocking.

Data Transformation and Display Technique for 3D Visualization of Rainfall Radar (강우레이더의 3차원 가시화를 위한 데이터 변환 및 표출기법)

  • Kim, Hyeong Hun;Park, Hyeon Cheol;Choi, Yeong Cheol;Kim, Tae Su;Choung, Yun Jae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.352-362
    • /
    • 2017
  • This paper proposes an algorithm for automatically converting and displaying rainfall radar data on a 3D GIS platform. The weather information displayed like rainfall radar data is updated frequently and large-scale. Thus, in order to efficiently display the data, an algorithm to convert and output the data automatically, rather than manually, is required. In addition, since rainfall data is extracted from the space, the use of the display image fused with the 3D GIS data representing the space enhances the visibility of the user. To meet these requirements, this study developed the Auto Data Converter application that analyzes the raw data of the rainfall radar and convert them into a universal format. In addition, Unity 3D, which has good development accessibility, was used for dynamic 3D implementation of the converted rainfall radar data. The software applications developed in this study could automatically convert a large volume of rainfall data into a universal format in a short time and perform 3D modeling effectively according to the data conversion on the 3D platform. Furthermore, the rainfall radar data could be merged with other GIS data for effective visualization.

Investigate the effect of spatial variables on the weather radar adjustment method for heavy rainfall events by ANFIS-PSO

  • Oliaye, Alireza;Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.142-142
    • /
    • 2022
  • Adjusting weather radar data is a prerequisite for its use in various hydrological studies. Effect of spatial variables are considered to adjust weather radar data in many of these researches. The existence of diverse topography in South Korea has increased the importance of analyzing these variables. In this study, some spatial variable like slope, elevation, aspect, distance from the sea, plan and profile curvature was considered. To investigate different topographic conditions, tried to use three radar station of Gwanaksan, Gwangdeoksan and Gudeoksan which are located in northwest, north and southeast of South Korea, respectively. To form the suitable fuzzy model and create the best membership functions of variables, ANFIS-PSO model was applied. After optimizing the model, the correlation coefficient and sensitivity of adjusted Quantitative Precipitation Estimation (QPE) based on spatial variables was calculated to find how variables work in adjusted QPE process. The results showed that the variable of elevation causes the most change in rainfall and consequently in the adjustment of radar data in model. Accordingly, the sensitivity ratio calculated for variables shows that with increasing rainfall duration, the effects of these variables on rainfall adjustment increase. The approach of this study, due to the simplicity and accuracy of this method, can be used to adjust the weather radar data and other required models.

  • PDF

A Study on the Simulated Radar Terrain Scan Data Generated from Discrete Terrain (이산지형정보에서 생성된 레이다 모의 지형 스캔 정보에 관한 연구)

  • Seunghun, Kang;Sunghyun, Hahn;Jiyeon, Jeon;Dongju, Lim;Sangchul, Lee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.1-7
    • /
    • 2022
  • A simulated radar terrain scan data generation method is employed for terrain following. This method scans the discrete terrain by sequentially radiating beams from the radar to the desired scan area with the same azimuth but varying elevation angles. The terrain data collected from the beam is integrated to generate the simulated radar terrain scan data, which comprises radar-detected points. However, these points can be located far from the beam centerline when the radar is far from them due to beam divergence. This paper proposes a geometry-based terrain scan data generation method for analysing simulated radar terrain scan data. The method involves detecting geometric points along the beam centerline, which forms the geometry-based terrain scan data. The analysis of the simulated radar terrain scan data utilising this method confirms that the beam width effects are accounted for in the results.

Implementation of AESA Radar Integration Analysis System by using Heterogeneous Media

  • Min-Jung Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2024
  • In this paper, implement and propose an Active Electronically Scanned Array (AESA) radar integration analysis system which specialized for radar development by using heterogeneous media. Most analysis systems are used to analyze and improve the cause of defects, so they help the test easier. However, previous log analysis systems that operate only based on text are not intuitive and difficult to find the information user want at once if there is a lot of log information. so when an equipment defect occurs, there are limitations in analyzing the cause of defect. Therefore, the analysis system in this paper utilizes heterogeneous media. The media defined in this paper refers to recording text-based data, displaying data as image or video and visualizing data. The proposed analysis system classifies and stores data that transmitted and received between radar devices, radar target detection and Tracking algorithm data, etc. also displays and visualizes radar operation results and equipment defect information in real time. With this analysis system, it can quickly provide information what user want and assistance in developing high quality radar.

A Study on Radar Image Simulation for Ocean Waves Using Radar Received Power (파랑에 관한 레이더 이미지 시뮬레이션을 위한 레이더 수신 출력 도입 기법 연구)

  • Park, Jun-Soo;Yang, Young-Jun;Park, Seung-Gun;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • This study presents a modified scheme for the radar image simulation of sea waves. A simulated radar image was obtained by taking into account the dot product of the directed vector from the radar and the normal vector of the sea surface. Moreover, to calculate the radar image, we used the radar received power and radar cross section. To demonstrate the effectiveness of the proposed scheme, the wave spectrum from field data was utilized to obtain the simulated sea waves. The radar image was simulated using numerically generated sea waves. The wave statistics from the simulation agrees comparatively with those of the original field data acquired by real radar measurements.

Wave and surface current measurement with HF radar in the central east coast of Korea (동해중부에서 HF Radar를 이용한 파랑 및 해수유동 관측)

  • Kim, Moo-Hong;Kim, Gyung-Soo;Kim, Hyeon-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.771-780
    • /
    • 2014
  • We installed HF Radar of Array type in Site A and Site B, observing the real-time wave and current in the central East coast of Korea. WERA(WavE RAdar) in this research uses HF Radar of Array Type with frequency range of 24.525 MHz, developed by Helzel, Germany. Each site is a 8-Channel system consisting of four transmitters and eight receivers, generating wave and current data, being observed every thirty minutes at the present time. HF Radar has grid resolution of an interval of 1.5 km using bandwidth of 150 kHz; The wave data covers an observation range of about 25 km, and the current data covers the maximum observation range of about 50 km. The Wave data observed by HF Radar was compared and verified with the AWAC data observed in the research sites. MIT also compared the Current data observed by HF Radar with Monthly the East sea average surface current and current flow pattern provided by KOHA(Korea Hydrographic and oceanographic Administration). The regression line and deviation of the comparison data of Wave was calculated by Principal Component Analysis, which showed correlation coefficient 0.86 and RMSD 0.186. Besides, data analysis of long-term changes of the current in the East coast showed that, during August and September, the North Korean Cold Current flow into the southward direction and the East Korean Warm Current flow into the northward direction in the coast.

Antipersonnel Landmine Detection Using Ground Penetrating Radar

  • Shrestha, Shanker-Man;Arai, Ikuo;Tomizawa, Yoshiyuki;Gotoh, Shinji
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1064-1066
    • /
    • 2003
  • In this paper, ground penetrating radar (GPR), which has the capability to detect non metal and plastic mines, is proposed to detect and discriminate antipersonnel (AP) landmines. The time domain GPR - Impulse radar and frequency domain GPR - SFCW (Stepped Frequency Continuous Wave) radar is utilized for metal and non-metal landmine detection and its performance is investigated. Since signal processing is vital for target reorganization and clutter rejection, we implemented the MUSIC (Multiple Signal Classification) algorithm for the signal processing of SFCW radar data and SAR (Synthetic Aperture Radar) processing method for the signal processing of Impulse radar data.

  • PDF

Effect of CAPPI Structure on the Perfomance of Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Dinh, Thi-Linh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.133-133
    • /
    • 2021
  • The performance of radar Quantitative Precipitation Estimation (QPE) using Long Short-Term Memory (LSTM) networks in hydrological applications depends on either the quality of data or the three-dimensional CAPPI structure from the weather radar. While radar data quality is controlled and enhanced by the more and more modern radar systems, the effect of CAPPI structure still has not yet fully investigated. In this study, three typical and important types of CAPPI structure including inverse-pyramid, cubic of grids 3x3, cubic of grids 4x4 are investigated to evaluate the effect of CAPPI structures on the performance of radar QPE using LSTM networks. The investigation results figure out that the cubic of grids 4x4 of CAPPI structure shows the best performance in rainfall estimation using the LSTM networks approach. This study give us the precious experiences in radar QPE works applying LSTM networks approach in particular and deep-learning approach in general.

  • PDF

Utilization of Radar-Raingauge for Flood Management

  • Shigeki, Sakakima;Kazumasa, Ito;Chikao, Fukami
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2003.05a
    • /
    • pp.93-100
    • /
    • 2003
  • In order to use radar rainfall data for flood management, it is necessary to study and develop a method for optimum error correction to obtain radar rainfall values that agree closely with surface rainfall data. This paper proposes an optimum estimation method for calculating rainfall in a river basin by using data from surface raingauges and radar raingauge systems. This paper also reports on recent applications of radar raingauge systems for accurate simulation of flood discharge based on river basin rainfall values obtained from radar raingauge systems.

  • PDF