• Title/Summary/Keyword: Radar Cross Section (RCS)

Search Result 191, Processing Time 0.022 seconds

Optimal Path Planning for UAVs to Reduce Radar Cross Section

  • Kim, Boo-Sung;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.54-65
    • /
    • 2007
  • Parameter optimization technique is applied to planning UAVs(Unmanned Aerial Vehicles) path under artificial enemy radar threats. The ground enemy radar threats are characterized in terms of RCS(Radar Cross Section) parameter which is a measure of exposure to the radar threats. Mathematical model of the RCS parameter is constructed by a simple mathematical function in the three-dimensional space. The RCS model is directly linked to the UAVs attitude angles in generating a desired trajectory by reducing the RCS parameter. The RCS parameter is explicitly included in a performance index for optimization. The resultant UAVs trajectory satisfies geometrical boundary conditions while minimizing a weighted combination of the flight time and the measure of ground radar threat expressed in RCS.

A Study on Radar Received Power based on Target Observing Position (표적 관측 위치에 따른 레이더 수신 전력에 관한 연구)

  • Park, Tae-Yong;Lee, Yura
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3063-3068
    • /
    • 2014
  • Since the RCS(Radar Cross Section) of target is important factor to determine radar performance, it is important to locate radar where large RCS is observed. However, the distance between the target and the radar is an important factor of the received power, as well as RCS. In this paper, it is calculated that received power from ballistic missile to radar based on different observed position and it is studied that to place radar for high detection efficiency.

RCS of Ballistic Missile Based on Radar Position (레이더 위치에 따른 탄도미사일의 RCS 특성)

  • Park, Tae-Yong;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.209-216
    • /
    • 2015
  • It is difficult to detect, track and intercept ballistic missile because of its high speed and short flight time from launching to target area. In order to increase the success rate of a ballistic missile interceptor, it is important to track the flight trajectory for a long time after the detection in the early launch. Radar Cross Section(RCS) of the target is important when the target to be detected by the radar, and the difference between the RCS value greatly changes depending on the viewing direction during the flight missile trajectory. In this paper, it is assumed that a ballistic missile is launched at east coast of North Korea, observe that missile by a land based radar and sea deployed radar. And it is analyzed and compared that RCS difference of ballistic missile.

A Study on RCS(Radar Cross Section) Performance with Antenna Transmit Signal on/off in the X-band Incident Wave Environment (X-band 입사파 환경에서 안테나 송신 신호 on/off에 대한 RCS(Radar Cross Section) 성능에 관한 연구)

  • Jung, Euntae;Park, Jinwoo;Yu, Byunggil;Kim, Youngdam;Kim, Kichul;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.59-65
    • /
    • 2020
  • Many technologies are being studied to reduce the RCS(Radar Cross Section) of stealth aircraft. Most RCS-reduction technlogies correspond to platforms. It is important to identify factors that RCS performance through simulation analysis of aircraft Mounted equipment. In particular, there are no studies of RCS performance in the radar frequency band when antenna transmit signals are applied. In this paper, the RCS performance variation on the transmit signal on/off of antennas mounted on a stealth aircraft was verified. Antennas were selected for each frequency band and simulated analysis to the RCS performance changes during antenna transmitting signal. Finally, to verify the characteristics of the change in RCS performance, RCS test measurements on the low-profile antenna transmit signal on/off were performed. In addintion, antenna RCS test measurement was performed according to the change of transmit signal power output. As a result, it was confirmed that there is no change in RCS performance when an antenna transmit signal is applied.

A Study on Radar Signal Model for Calculation of RCS Using MUSIC Algorithm (레이더 반사단면적 계산을 위한 레이더 신호모델에 관한 연구)

  • Jeong Junng-Sik;Pang Tian-Ting;Jong Jae-Yong;Kim Chul-Seung;Yang Won-Jae;Ahn Young-Sup
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • The detectability of radar depends on RCS(radar cross section). The RCS for complex radar targets may be only approximately calculated by using low-frequency or high-frequency scattering methods, while the RCS for simple radar targets can be exactly obtained by applying on eigen-function method. However, the conventional methods for calculation of RCS are computationally complex. We propose an radar signal model for RCS calculation by MUSIC algorithm In this research, it is assumed that the radar target is considered as a ring of scatterers. The amplitudes of scatterers may be statistically distributed. As the result, the radar signal model is proposed to use MUSIC, and the RCS is calculated by a simple linear algebraic method.

  • PDF

A Study on a Dynamic Radar Cross Section Analysis Technique for a Surface Warship (수상함의 동적 레이더 반사면적 해석 기법 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Yun-Hwan;Cho, Dae-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.77-81
    • /
    • 2009
  • The radar cross section (RCS) of a warship is one of the most important design features in terms of her survivability in hostile environments. Ocean waves continuously changes the attitude of an objective warship to hostile radar and distorts the RCS as a result. This paper presents a dynamic RCS analysis technique and procedure that considers temporal ship motion. First, data sets are prepared for ship motions in 6 degrees of freedom, which are numerically simulated for an objective warship via frequency to time domain conversion with response amplitude operators and specified ocean wave spectra. Second, a series of RCS analysis models are transformed geometrically by referring to ship motion data sets. Finally, temporal RCS analyses are carried out with the RCS simulation code, SYSCOS. As an example, RCS analysis results are given for a virtual warship, which show that ship motions temporally change RCS values and cause RCS reduction compared with static value in terms of mean values.

A Study on the Effective Scattering Center Analysis for Radar Cross Section Reduction of Complex Structures (복합구조물의 RCS 저감을 위한 효율적 산란중심 해석에 관한 연구)

  • Kim, Kook-Hyun;Kim, Jin-Hyeong;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.421-426
    • /
    • 2005
  • Scattering center extraction schemes for radar cross section reduction of large complex targets, like warships, was developed, which are an 1-D radar image method(range profile), and a direct analysis based on an object precision method. The analysis result of partial dihedral model shows that the presented direct analysis method is more efficient than the 1-D radar image method for scattering center extraction of interested targets, in terms of radar cross section reduction design, not signal processing. In order to verify the accuracy of the direct analysis method, a scattering center analysis of an naval weapon system was carried out, and the result was coincident with that of another well-known RCS analysis program. Finally, an analysis result of RCS and its scattering center of an 120m class warship-like model presented that the direct analysis method can be an efficient and powerful tools for radar cross section reduction of large complex targets.

A Study on Calculation of RCS Using MUSIC Algorithm (MUSIC 알고리즘에 의한 레이더 반사단면적 계산법에 관한 연구)

  • Pang Tian Ting;Jeong Jung-Sik;Park Sung-Hyeon;Nam Taek-Kun;Yim Jeong-Bin;Aim Young-sup
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.43-46
    • /
    • 2005
  • The detectability of radar depends on RCS(radar cross section). The RCS for complex radar targets may be only approximately calculated by using low-frequency or high-frequency scattering methods, while the RCS for simple rob targets can be exactly obtained by applying an eigen-function method. However, the conventional methods for calculation of RCS are computationally complex. We propose an approximation method for RCS calculation by MUSIC algorithm In this research, it is assumed toot the radar target is considered as a ring of scatterers. The amplitudes of scatterers may be statistically distributed. As the result, the radar signal model is proposed to use MUSIC, and the RCS is calculated by a simple linear algebraic method.

  • PDF

Study on radar deployment for improving the ballistic missile detection probability (탄도미사일 탐지 확률 향상을 위한 레이더 배치에 관한 연구)

  • Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.518-520
    • /
    • 2014
  • Radar Cross Section(RCS) is very important factor to detect target by radar. Even if the same target, RCS value is significantly different according to the direction facing the radar. Therefore, it is advantageous to place the radar, where RCS is larger to increase the probability of detecting a target with a radar. North Korean ballistic missiles are major threat to our security, ballistic missiles should be detected early and traced for ballistic missile defense. In this paper, it is analyzed that ballistic missile's RCS characteristics and trajectory and proposed a way of radar deployment to improve the detection probability of ballistic missile.

  • PDF

A theoretical calculation and measurements for Radar Cross Section of a moving complex metal target (복잡한 형태를 갖고 운동중인 금속제물체의 Radar Cross Section)

  • 진연강;윤현보
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.6
    • /
    • pp.33-41
    • /
    • 1971
  • This paper presents a theoretical calculation and measurements for the RCS(Radar Cross Scetion) value of a moving complex target, a small metal aircraft. The front view of aircraft on the drawing is divided in to several simple models to calculate its RCS value by the relative phase nlethod and the random phase method at the given frequency. The aircraft, cessna 305, inbounded from 170$^{\circ}$ to X international airport, is searched by radar with the wave length of 11cm to measure its miximum range which is necessary to determine the RCS value. The measured data are found to be similar to the theoretical values.

  • PDF