• Title/Summary/Keyword: Racing car

Search Result 35, Processing Time 0.019 seconds

The Analysis and Design of the Driving System for the Solar Car (한국교통대학교 Solar Car 구동 시스템 분석 및 설계)

  • Kim, IL-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.865-872
    • /
    • 2019
  • In this paper, we describe the Solar Car, Woongbi, which was created to participate in the World Solar Challenge(WSC) at the team NeulHaeRang of Korea National University of Transportation. The WSC is the world's largest solar car racing competition and has a separate automobile regulation and must be manufactured to meet the regulations. Therefore, the key point of the solar car design is to optimize the energy efficiency based on the regulations. The solar car's drive system consists of a solar array to convert solar energy into electric energy, a maximum power point tracker (MPPT) controller to track the converted electric energy to maximum output power, a battery to store the produced electric energy, a BLDC (Brushless DC) motor for driving the vehicle by converting energy into mechanical energy, and a motor controller for controlling the BLDC. The optimal design methods for solar energy conversion and electric driving system of battery, motor are presented in this paper.

Development of an F-125 Machine Using 3D PLM Systems (3D PLM 시스템을 이용한 F-125 차량의 개발)

  • Lee S. H.;Lee K.-S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.77-88
    • /
    • 2005
  • This paper introduces a project for the development of an F-125 machine using 3D PLM systems including 3D CAD, CAM, CAE, PDM, and DMU systems. Here, the F-125 machine is a formula racing car equipped with a 125cc motorcycle engine. A development process and computer-integrated environment was established using 3D PLM systems on the conceptual basis of concurrent and virtual engineering. A DMU model for a full vehicle was built using CATIA V.5 and used to check interference between parts and to simulate assembly process. This DMU-based approach enables to find and fix manufacturing problems in the early design stage. All development activities have been done by the graduate and undergraduate students of the automotive engineering department of Kookmin University. Through the project, the students could acquire knowledge about car development process and 3D PLM systems in automotive industry.

P/M Aluminium Automobile Parts in Sumitomo Electric Ind. Ltd.

  • Akechi, Kiyoaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.5-5
    • /
    • 1997
  • Rapidly-solidified P/M aluminium alloys for automobile and home appliance industries were developed. Rapidly-solidification made it possible to refine microstructures and to expand the range of alloy composition. For example, Al-Si alloys containing transition metal have lower thermal expansion coefficient, more excellent wear resistance, higher strength, and better machinability than those of conventional aluminium alloys. Therefore, in Japan, the technologies on powder-extrusion and powder-forging of aluminium alloy powders are developed for fifteen years, and applied to several parts, such as cylinder liners of motor cycle engines, rotors and vanes of compressors for car air conditioner, oil pump rotor for racing car, and so on. In this presentation, applications for automobile are mentioned. In particular, cylinder liners made of particle-dispersed composites with fine alumina and graphite are in detail described.

  • PDF

Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car (저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계)

  • Jang, Woongeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5955-5962
    • /
    • 2014
  • Generally, the frame design of a vehicle is a critical technology that plays an important role in the racing and high performance sports car market. The high performance of race car frame means that it requires high torsional stiffness because it directly affects the cornering behavior of the race car. The optimal design for the frame of a low-cost single seat race car was carried out using the DOE (Design Of Experiments) with Taguchi's orthogonal array and FEM (Finite Element Method) analysis to secure sufficient torsional stiffness in this paper. According to the results by DOE and FEM analysis, the optimal design case produced improved 10.7% and 14.5% improvement in each stiffness-to-weight ratio and frame weight than in the early design step. Therefore, this paper shows that the optimal design with Taguchi's orthogonal array is very useful and effective for designing a tubular space frame of a low-cost single seat race car in the early design step.

Simulation Analysis on the Impact of Racing Car with Space Frame (스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Bang, Seung-Ok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2341-2348
    • /
    • 2010
  • In this paper, strain and stress on space frame are analyzed at racing car under crash loads. As the deformation is reduced to a minimum during crash and the vulnerable parts are grasped, the safety of driver is ensured. The vehicle frame is modelled with truss structure by inputting the material property of carbon steel on finite element analysis. The increase of impulse momentum is due to speed change at frontal collision. This influence effected on vehicle frame is also analyzed by ANSYS program. The deformation of the frame is studied by applying the crash loads at front, side and rear directions. Though the influence on the seat of driver is small at frontal and rear crash, the deformation due to impact is progressed into this seat. The safety of frame is enhanced by making up for these weak deformations and these results of simulation analysis can be applied to the production of the actual vehicle frame.

A Study on the Reduction in VR Cybersickness using an Interactive Wind System (Interactive Wind System을 이용한 VR 사이버 멀미 개선 연구)

  • Lim, Dojeon;Lee, Yewon;Cho, Yesol;Ryoo, Taedong;Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.43-53
    • /
    • 2021
  • This paper presents an interactive wind system that generates artificial winds in a virtual reality (VR) environment according to online user inputs from a steering wheel and an acceleration pedal. Our system is composed of a head-mounted display (HMD) and three electric fans to make the user sense touch from the winds blowing from three different directions in a racing car VR application. To evaluate the effectiveness of the winds for reducing VR cybersickness, we employ the simulator sickness questionnaire (SSQ), which is one of the most common measures for cybersickness. We conducted experiments on 13 subjects for the racing car contents first with the winds and then without them or vice versa. Our results showed that the VR contents with the artificial winds clearly reduce cybersickness while providing a positive user experience.

A Convergence Study through Structural Analysis for Lightweight of Brake Pedal for Racing Spec Installed with Balance Bar (밸런스 바가 장착된 레이싱 스펙 브레이크 페달의 경량화 구조 해석을 통한 융합연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.123-128
    • /
    • 2019
  • The structural analysis for light weight on the brake pedal of the racing spec installed with the balance bars of the four models were performed in this study. By utilizing two materials of steels and aluminum alloys, four shapes were analyzed. It is generally assumed that the magnitude of force a person may incur when riding in a car is 1000 N. The fixed points are designated as the parts at which the bolts and pedals are fixed and the mounting part of the balance bar applied by the stress transmitted through the rod when the pressure of the master cylinder rises and the operation stops. Through this analysis study, it is thought that the vulnerability of each brake pedal model can be investigated and the transmission efficiency of the brake pedal can be increased by light weight. As the design data with the durability of brake pedal obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the part of car at real life.

Uncertainty Sequence Modeling Approach for Safe and Effective Autonomous Driving (안전하고 효과적인 자율주행을 위한 불확실성 순차 모델링)

  • Yoon, Jae Ung;Lee, Ju Hong
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.9-20
    • /
    • 2022
  • Deep reinforcement learning(RL) is an end-to-end data-driven control method that is widely used in the autonomous driving domain. However, conventional RL approaches have difficulties in applying it to autonomous driving tasks due to problems such as inefficiency, instability, and uncertainty. These issues play an important role in the autonomous driving domain. Although recent studies have attempted to solve these problems, they are computationally expensive and rely on special assumptions. In this paper, we propose a new algorithm MCDT that considers inefficiency, instability, and uncertainty by introducing a method called uncertainty sequence modeling to autonomous driving domain. The sequence modeling method, which views reinforcement learning as a decision making generation problem to obtain high rewards, avoids the disadvantages of exiting studies and guarantees efficiency, stability and also considers safety by integrating uncertainty estimation techniques. The proposed method was tested in the OpenAI Gym CarRacing environment, and the experimental results show that the MCDT algorithm provides efficient, stable and safe performance compared to the existing reinforcement learning method.

Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition (세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현)

  • Choi, Jung Hyun;Lim, Ye Eun;Park, Jong Hoon;Jeong, Hyeon Soo;Byun, Seung Jae;Sagong, Ui Hun;Park, Jeong Hyun;Kim, Chang Hyun;Lee, Jae Chan;Kim, Do Hyeong;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

Car Driving Simulation Game using 3-axis Gyroscope Sensor (3축 자이로스코프 센서를 이용한 자동차 주행 시뮬레이션)

  • Han, Kwangbae;Ko, Kwangman
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1089-1094
    • /
    • 2016
  • A simulation game represented the real world and situation as a video games, In the first time, this simulation game primarily applied to military practice areas and then it's applied areas were extended to strategy, flighting, racing, life areas. In this paper, we developed the driving simulator that operate the 3-axis sensor attached driver's handle which could forward/backward moving, control of direction, and transmit of gear in the virtual space. For more the realities of the situation and accuracy of the location and speed, we adopted the 3-axis sensing informations, Unreal engine4' and Blueprint.