• Title/Summary/Keyword: Rabbit proximal stomach

Search Result 3, Processing Time 0.018 seconds

Prejunctional Modulation of Non-adrenergic Non-cholinergic Relaxation of the Rabbit Proximal Stomach by Potassium Channels (토끼 위 근위부의 비-아드레날린 비-콜린성 이완반응의 포타슘 체널에 의한 접합전 조절작용)

  • Hong, Eun-Ju;Park, Mi-Sun;Park, Sang-Il;Kim, Myung-Woo;Choi, Su-Kyung;Hong, Sung-Cheul
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.399-406
    • /
    • 1997
  • The effects of different $K^+$ channel blockers were investigated on the non-adrenergic non-cholinergic (NANC) relaxations in the circular muscle of the rabbit proximal stomach. Non-selective blockers of $K^+$ channels, 4-aminopyridine (4-AP, 3~30${\mu}M$) and tetraethylammonium (TEA, 100~1000${\mu}M$) significantly enhanced the NANC relaxations in a concentration-dependent manner. The enhancement was more prominent for the NANC relaxations induced by the electric field stimulation (EFS) with lower frequencies. Blockers of large conductance $Ca^{2+}$-activated $K^+$ channels, charybdotoxin and iberiotoxin, a blocker of small conduntance $Ca^{2+}$-activated $K^+$ channels, apamin and a blocker of ATP-sensitive $K^+$ channels, glibenclamide had no effect on the NANC relaxations, respectively. Exogeneous administration of nitric oxide (NO, 1~30${\mu}M$) caused concentration-dependent relaxations which showed a similarity to those obtained with EFS. None of the $K^+$ channel blockers had an effect on the concentration-dependent relaxation in response to NO. These results suggest that prejunctional $K^+$ channels regulate the release of NO from the NANC nerve in the rabbit proximal stomach as the inhibition of prejunctional $K^+$ channels increases the NANC relaxation induced by the EFS.

  • PDF

Selective Cytotoxicity of New Platinum (II) Complex Containing 1,3-Bis-phenylthiopropane (1,3-비스페닐치오 프로판을 배위자로 한 백금 (II)착체의 선택적 세포독성)

  • 노영수;윤기주;이경태;장성구;정지창
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.369-377
    • /
    • 1999
  • A new series of highly water soluble platinum(II) complexes {Pt(II)[1,3-bis(phenylthio) propane](trans- -1,2-diaminocyclohexane) (PC-1) and Pt(II)[1,3-bis-(phenythio)propane] cis-1,2-diaminocyclohexane(PC-2)} were synthesized, and characterized by their elemental analysis and by various spectroscopic techniques[infrared(IR), 13C-nuclear magnetic resonance (NMR)]. In vitro antitumor activity of new Pt(II) complexes was tested against P-388 and L-1210 mouse lymphocytic leukemia cell lines, PC-14 / P, PC-14/ADM and PC-14 / CDDP human pulmonary adenocarcinima, DU-145 human prostate carcinoma, HT-1376 human bladder carcinoma, ZR-75-1 human breast carcinoma, MKN-45/P and MKN-45/CDDP human gastric adenocarcinoma cell lines using colorimetric MTT[3-(4,5-dimethyl thiazol-2-yl)-2.5-diphenyltetrazoliumbromide] assay for cell survival and proliferation. PC-1 showed active against L-1210, P-388 leukemia, human lung, stomach, prostate, bladder and breast cancer cell lines, and the antitumor activity of these compounds were comparable or superior to those of PC-2 and displatin. The nephrotoxicities of PC-1 and PC-2 were found quite less than that of cisplatin using MTT and [3H] thymidine uptake in rabbit proximal tubule cells and human kidney cortical cells. Based on these results, this novel platinum (II) complex compound (PC-1) represents a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low nephrotoxicity.

  • PDF

Pharmacological Studies of Cefoperazone(T-1551) (Cefoperazone(T-1551)의 약리학적 연구)

  • Lim J.K.;Hong S.A.;Park C.W.;Kim M.S.;Suh Y.H.;Shin S.G.;Kim Y.S.;Kim H.W.;Lee J.S.;Chang K.C.;Lee S.K.;Chang K.C.;Kim I.S.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF