• Title/Summary/Keyword: Rabbit kidney cortical slices

Search Result 11, Processing Time 0.017 seconds

Effect of renal ischemia on amino acid transport in rabbit renal cortical slices (신장 허혈이 토끼 신피질 절편에서 아미노산 이동에 미치는 영향)

  • Nam, Yun-jeong;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.111-117
    • /
    • 1997
  • This study was carried out determine the effect of renal ischemia on amino acid transport in rabbit renal cortical slices. The animal models of renal ischemia induced experimentally by clamping the renal artery. These results were summarized as follows: 1. The uptake of amino acids lysine and ${\alpha}$-aminobutyrate(AIB), dicarboxylate succinate and organic anion PAH in cortical slices was normal or increased after 30 or 60 min of ischemia in vivo. 2. In a 30 min ischemic kidney, the slice uptake of amino acids was returned to the control level by 30 min of reflow. In a 60 or 90 min ischemic kidney, the lysine uptake was returned to the control level after of reflow, but the uptake of AIB and succinate was significantly reduced during reflow period of 30-120 min. 3. Oxygen consumption in cortical slices was increased after 30 min of ischemia but was not altered by 60 min of ischemia. This results indicat that transient ischemia caused increasing of amino acid uptake in renal cortical slices without metabolic disorder of renal proximal tubule.

  • PDF

Accumulation of Uric Acid in Rabbit Kidney Cortical Slices (가토 신피질 절편에서 Uric Acid 이동)

  • Yee, Sung-Tae;Lim, Chae-Joon;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.283-289
    • /
    • 1987
  • Uric acid transport across the basolateral membrane of renal proximal tubules was studied in rabbit kidney cortical slices. Uric acid uptake was greater under $O_2$ atmosphere compared to under $N_2$ atmosphere, and was increased with $Na^{2+}$ concentration in incubation medium. Uric acid inhibited PAH uptake but not TEA uptake and did trans-stimulated PAH efflux. PAH also inhibited uric acid uptake. Uric acid uptake was inhibited by harmaline, ouabin, SITS, DIDS and pyrazinoic acid. The inhibition of PAH uptake by these inhibitors also was reasonably comparable to that of uric acid uptake. These results suggest that uric acid was transported across the basolateral membrane of renal tubule by a carrier-mediated process which was by a common transport system with PAH in rabbit.

  • PDF

Effect of Renal Ischemia in Tetraethylammonium Transport in Rabbit Renal Coritcal Slices

  • Joo, Woo-Sik;Nam, Yun-Jeong;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.171-177
    • /
    • 1991
  • This study was carried out to determine effect of acute renal ischemia on transport function of organic cation, tetraethylammonium (TEA), in rabbit kidney proximal tubule. Clamping of the renal artery for 30 and 60 min produced a polyuria which was accompanied by an increase in $Na^+$ excretion. The capacity of kidney cortical slices to accumulate TEA was increased after 30 and 60 min of ischemia. When blood flow was restored for 30 min after 30 and 60 min of ischemia, the augmented TEA uptake was recovered to the control values. Oxygen consumption of cortical slices was stimulated after 30 min of ischemia, whereas it was not altered by 60 min of ischemia. A 90-min ischemia produced a significant inhibition of TEA uptake and tissue oxygen consumption. These results suggest that the basolateral transport system for organic cation persists after ischemic periods of 60 min despite evidence that tubular reabsorptive mechanism of $Na^+$ and water is markedly impaired. This may indicate that the active secretory systems of proximal tubule are more resistant to ischemic injury than the reabsorptive systems.

  • PDF

Role of Lipid Peroxidation on $H_2O$$_2$-Induced Renal Cell Death in Cultured Cells and Freshly Isolated Cells

  • Jung, Soon-Hee
    • Biomedical Science Letters
    • /
    • v.8 no.4
    • /
    • pp.251-256
    • /
    • 2002
  • This study was undertaken to determine the underlying mechanisms of reactive oxygen species-induced cell injury in renal epithelial cells and whether there is a difference in the role of lipid peroxidation between freshly isolated renal cells and cultured renal cells. Rabbit renal cortical slices were used as a model of freshly isolated cells and opossum kidney (OK) cells as a model of cultured cells. Cell injury was estimated by measuring lactate dehydrogenase (LDH) release in renal cortical slices and frypan blue exclusion in OK cells. $H_2O$$_2$ was used as a drug model of reactive oxygen species. $H_2O$$_2$ induced cell injury in a dose-dependent manner in both cell types. However, renal cortical slices were resistant to $H_2O$$_2$ approximately 50-fold than OK cells. $H_2O$$_2$-induced cell injury was prevented by thiols (glutathione and dithiothreitol) and iron chelators (deferoxamine and phenanthroline) in both cell types. $H_2O$$_2$-induced cell injury in renal cortical slices was completely prevented by antioxidants N,N-diphenyl-p -phenylenediamine and Trolox, but the cell injury was not affected by these antioxidants in OK cells. $H_2O$$_2$ increased lipid peroxidation in both cell types, which was completely inhibited by the antioxidants. These results suggest that $H_2O$$_2$ induces cell injury through a lipid peroxidation-dependent mechanism in freshly isolated renal cells, but via a mechanism independent of lipid peronidation in cultured cells.

  • PDF

Effect of Scutellaria Baicalensis Georgi. Extract on Cisplatin-Induced Acute Renal Failure in Rabbits (토끼에서 cisplatin에 의해 유도된 급성 신부전시 황금(黃芩; Scutellaria Baicalensis Georgi.) 추출물의 효과)

  • Kim, Soo-Chang;Song, Yeong-Min;Lee, Sung-Dae;Song, Seung-Hee;Koh, Phil-Ok;Kim, Jong-Su;Kim, Chung-Hui;Kang, Chung-Boo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.392-399
    • /
    • 2007
  • Scutellaria baicalensis Georgi. (SBGE) is known to be antioxidant effect. In addition of the effects, we further investigated the SBGE on the antioxidant effect on a renal cortical slices cell and kidney protecting effects. The results were as follows. 1 When renal cortical slices separated from a rabbit's kidney were treated with 1mM tert-Butylhydroperoxide (t-BHP) in the presence of SBGE. SBGE significant prevented t-BHP induced increase in lactate dehydrogenase (LDH) release and lipid peroxidation. 2. When renal cortical slices separated from a rabbit's kidney were treated with oxidant $300{\mu}M$ cisplatin in the presence of SBGE. SBGE significant prevented cisplatin-induced increase in LDH release and lipid peroxidation. 3. Pretreatment with 0.1g/kg SBGE for seven day and treatment with 5 mg/kg cisplatin by the intraperitoneal injection The results were that the pretreatment group with SBGE showed a significant decrease in lipid peroxidation, increase in clearance rate of blood urea nitrogen (BUN) and creatinine in the kidney than the administering single agent group of cisplatin. and pretreatment group with SBGE showed intact microvillus of proximal tubule and no contraction of rumen, it was a similar result with normal group. With the results SBGE showed to be highly effective on antioxidant effect and cellular protection activity against cisplatin that was a toxic agent on a kidney. Therefore, SBGE is considered to have protective effective on a disordered kidney or kidney diseases such as nephritis or renal failure that cause tissue damages in a kidney.

Effects of Anions on PAH Transport in Rabbit Kidney Cortical Slices (가토 신피질 절편에서 PAH$(\rho-aminohippuric\;acid)$ 이동에 미치는 음이온의 영향)

  • Suh, Duk-Joon;Lee, Sang-Ho;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.19 no.1
    • /
    • pp.49-59
    • /
    • 1985
  • The effects of anions on net accumulation of $(\rho-aminohippuric\;acid)$(PAH) were studied in rabbit kidney cortical slices. Experiments were carried while varying the major anionic composition of the incubation medium(replacement of $Cl^-$ by isethionate and $SCN^-$). The total replacement of $Cl^-$ with isethionate, $SO_4\;^{2-}$ and $SCN^-$ in the incubation medium decreased the 60-min slice-to-medium concentration(S/M) ratio of PAH to 60%, 40% and 50% of control value, respectively. The degree of inhibition in PAH accumulation by the replacement of isethionate and $SCN^-$ was increased with increasing of both preincubation and incubation time. The influence of isethionate and $SCN^-$ on PAH uptake was fully reversible. Both isethionate and $SCN^-$ increased the apparent Km value significantly with no change on the apparent Vmax value, suggesting a competitive inhibition on PAH uptake. And the inhibitory effect of $SCN^-$ on PAH uptake decreased with increase of pH in the incubation medium while that of isethionate increased with increase of pH. Intracellular water content, intracellular electrolyte concentration and oxygen consumption were not influenced by the replacement of $Cl^-$ with isethionate or $SCN^-$ in the incubation medium. These results suggest that both $isethionate^-$ and $SCN^-$ inhibit the PAH uptake by binding to some site necessary for normal PAH transport without affecting the cellular viability.

  • PDF

Role of Phospholipase $A_2$ in Hypoxia-Induced Renal Cell Injury

  • Choi, Won-Rak;Ko, Sun-Hee;Cho, Su-In;Woo, Jae-Suk;Jung, Jin-Sup;Lee, Sang-Ho;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.93-100
    • /
    • 1999
  • The present study was designed to assess the roles of $PLA_2$ activation and arachidonic acid (AA) metabolites in hypoxia-induced renal cell injury. Hypoxia increased LDH release in a dose-dependent manner in rabbit renal cortical slices, and this increase was significant after 20-min hypoxia. The hypoxia-induced LDH release was prevented by amino acids, glycine and alanine, and extracellular acidosis (pH 6.0). Buffering intracellular $Ca^{2+}$ by a chelator, but not omission of $Ca^{2+}$ in the medium produced a significant reduction in hypoxia-induced LDH release. The effect of hypoxia was blocked by $PLA_2$ inhibitors, mepacrine, butacaine, and dibucaine. A similar effect was observed by a 85-kD $cPLA_2$ inhibitor $AACOCF_3.$ AA increased hypoxia-induced LDH release, and albumin, a fatty acid absorbent, prevented the LDH release, suggesting that free fatty acids are involved in hypoxia-induced cell injury. These results suggest that $PLA_2$ activation and its metabolic products play important roles in pathogenesis of hypoxia-induced cell injury in rabbit renal cortical slices.

  • PDF

Studies on the Transport of Organic Acids in the Rabbit Kindey Slice, with Special Reference to the Role of Various Electrolytes (가토신피질절편(家兎腎皮質切片)에서의 유기산이동(有機酸移動)에 관(關)한 연구(硏究) -특(特)히 전해질(電解質)의 영향(影響)에 대(對)하여-)

  • Chung, Soon-Tong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.59-71
    • /
    • 1968
  • The uptake of phenolsulfonphthalein (PSP) and of paraaminohippuric acid (PAH) by cortical slices of the rabbit kidney was investigated while varying the composition of medium. The overall uptake of these substances displayed typical active transport characteristics and was significantly enhanced in presence of acetate. When the phosphate buffer was used the optimal pH was 7.4 for both substances. However, when the tris-buffer was used the optimal pH was 7.4 for PSP and 8.3 for PAH. Removal of $Na^+$ from the medium resulted in a significant reduction in the uptake. Similar results, though lesser in magnitude, were obtained when either $K^+\;or\;Ca^{++}$ was removed from the medium. However, there was no additive effect when $K^+\;and/or\;Ca^{++}$ were additionally removed from the $Na^+-free$ medium. The presence of ${NH_4}^+$ greatly reduced while $Li^+\;and\;Mg^{++}$ moderately reduced the uptake of both substances. However, choline had no effect. In substrate-leached slices, acetate greatly enhance the uptake of organic acids; but this action was not demonstrable in absence of $Na^+,\;K^+\;or\;Ca^{++}$.

  • PDF

Effect of Sam Hwa San Extract on Renal Function in Rabbit (삼화산(三和散)이 가토(家兎) 신장기능(腎臟機能)에 미치는 영향(影響))

  • Jeong, Ji-Cheon
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.1
    • /
    • pp.55-80
    • /
    • 1992
  • In order to examine that the effect of Sam Hwa San, circulating the vital energy of Sam Cho and controlling body fluid metabolism, gives any influence on renal function, changes in the urine flow, eletrolytes excretion, plasma aldosterone concentration and renin activity were observed after intravenous infusion of the Sam Hwa San extract in rabbit. Also in vitro effect of the herb extract on oxygen consumption in renal cortical slices and ATPase activity in kidney microsomes was measured. The following results were obtained : 1. The urine flow was markedly increased at 10 min after intravenous infusion of the Sam Hwa San extract($0.134{\pm}0.015$ vs. $0.433{\pm}0.046ml/min.kg$), but return ed to normal value after 40 min of infusion. 2. The glomerular filtration rate was significantly increased at 10 min after in travenous infusion of the Sam Hwa San extract, and the renal plasma flow at 10 and 20 min after infusion of the Sam Hwa San extract, following return to normal value. 3. $Na^+$ excretion was significantly increased during 10-40 min after intravenous infusion of the Sam Hwa San extract, although showed the maximal rate at 10-20 min. The fractional $Na^+$ excretion was also increased during 10-40 min. $K^+$ excretion was rapidly increased at 10 min after the intravenous Infusion of the Sam Hwa San extract and then gradually decreased to normal level at 40 min. The fractional $K^+$ excretion was significantly increased during 10-40 min after the intravenous infusion of the Sam Hwa San extract. 4. The plasma aldosterone concentration and renin activity were not altered by the infusion of the Sam Hwa San extract. 5. The ouabain-sensitive oxygen consumption of renal cortical slices was significantly reduced by the Sam Hwa San extract(0.5 and 1.0 vol.%). 6. The Na-K-ATPase activity of renal microsomes was strongly inhibited by the Sam Hwa San extract(0.5 and 1.0 vol.%). These results suggest that the Sam Hwa San causes a strong diuretic effect which results from reduction of Na reabsorption in renal tubule by a direct inhibition of Na-pump and, in part, from all increase in renal blood flow. In clinic, it is considered to obtain the therapeutic effect in body fluid metabolism disharmony to cause the circular disorder of vital energy.

  • PDF

Effect of Salviae Radix on Impairment of Membrane Transport Function in Rabbits with Myoglobinuric Acute Renal Failure (마이오글로빈뇨성 급성 신부전 토끼에서 신장 세포막 수송 기능 장애에 대한 단삼의 효과)

  • Ji-Cheon, Jeong;Hyun-Soo, Kim
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.119-128
    • /
    • 2000
  • This study was carried out to determine if Salviae Radix extract (SRE) exerts protective effect against alterations in membrane transport function in rabbits with rhabdomyo lysis-induced acute renal failure. Acute renal failure was induced by intramuscular administration of glycerol (50%, 10 ml/kg). GFR in the glycerol-injected animals was reduced to 11% of the basal value and the fractional $Na^{+}$ excretion was increased to 7.8-fold, indicating generation of acute renal failure. When animals received SRE pretreatment for 7 days prior to glycerol injection, such changes were significantly attenuated. The fractional excretion of glucose and phosphate was increased more than 43-fold and 27-fold, respectively, in rabbits treated with glycerol alone. However, they were increased to 17-and 4.3-fold, respectively, in SRE-pretreated rabbits, and these values were significantly lower than those in rabbits treated with glycerol alone. Uptakes of glucose and phosphate in purified isolated brush-border membrane, the $Na^{+}-K^{+}-ATPase$ activity in microsomal fraction, and cellular ATP levels all were reduced in rabbits treated with glycerol alone. Such changes were prevented by SRE pretreatment. Uptakes of organic ions, PAH and TEA, in renal cortical slices were inhibited by the administration of glycerol, which was prevented by SRE pretreatment. Pretreatment of an antioxidant DPPD significantly attenuated the increase in the fractional excretion of glucose and phosphate induced by rhabdomyolysis. These results indicate that rhabdomyolysis causesimpairment inreabsorption of solutes in the proximal tubule via the generation of reactive oxygen species, and SRE pretreatment may provide the protection against the rhabdomyolysis-induced impairment by its antioxidant action.

  • PDF