• Title/Summary/Keyword: RWC

Search Result 46, Processing Time 0.029 seconds

Drought Tolerance in Italian Ryegrass is Associated with Genetic Divergence, Water Relation, Photosynthetic Efficiency and Oxidative Stress Responses

  • Lee, Ki-Won;Woo, Jae Hoon;Song, Yowook;Lee, Sang-Hoon;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.208-214
    • /
    • 2022
  • Drought stress is a condition that occurs frequently in the field, it reduces of the agricultural yield of field crops. The aim of the study was to screen drought-adapted genotype of Italian rye grass. The experiments were conducted between the two Italian ryegrass (Lolium multiflorum L.) cultivars viz. Hwasan (H) and Kowinearly (KE). The plants were exposed to drought for 14 days. The results suggest that the morphological traits and biomass yield of KE significantly affected by drought stress-induced oxidative stress as the hydrogen peroxide (H2O2) level was induced, while these parameters were unchanged or less affected in H. Furthermore, the cultivar H showed better adaptation by maintaining several physiological parameter including photosystem-II (Fv/Fm), water use efficiency (WUE) and relative water content (RWC%) level in response to drought stress. These results indicate that the cultivar H shows improved drought tolerance by generic variation, improving photosynthetic efficiency and reducing oxidative stress damages under drought stress. These findings can be useful to the breeder and farmer for improving drought tolerance in Italian rye grass through breeding programs.

Changes in Antioxidant Enzyme Activities of Two Contrasting Ecotypes of Arundinella hirta to Drought Stress

  • Chang Woo Min;Yun-Hee Kim;Byung-Hyun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.67-74
    • /
    • 2023
  • To understand antioxidant enzyme response of two contrasting Arundinella hirta ecotypes to drought stress, drought-tolerant Youngduk and drought-sensitive Jinju-1, were comparatively analyzed changes in the enzymatic activities of peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR). Two ecotypes, drought-tolerant Youngduk and drought-sensitive Jinju-1 were subjected to drought stress by withholding water for 12 days. ROS accumulation level and electrolytic leakage were significantly increased in both A. hirta ecotypes by drought stress treatment but less in Youngduk than Jinju-1. The RWC significantly decreased in both the drought stress-treated ecotypes as compared to control, but less in Youngduk than Jinju-1. Soluble sugar and protein content were increased more in drought stress-treated Youngduk as compared to Jinju-1. The activities of antioxidant enzymes such as SOD, CAT, POD, APX, and GR increased significantly in both the drought stress-treated ecotypes Youngduk and Jinju-1 as compared to control. The increase in antioxidant enzyme activity level was more prominent in drought stress-treated Youngduk as compared to Jinju-1. Taken together, these results suggest that Youngduk was more tolerant to drought stress than Jinju-1, and seem to indicate that tolerance of A. hirta to drought stress is associated with increased activity of antioxidant enzymes.

Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine

  • Wang, Gui-Ping;Hui, Zhen;Li, Feng;Zhao, Mei-Rong;Zhang, Jin;Wang, Wei
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.213-222
    • /
    • 2010
  • Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to $40^{\circ}C$ for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular $CO_2$ concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.

A Review on the Atmospheric Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) in Asia Since 2000 - Part I: Data from Developed Countries

  • Suvarapu, Lakshmi Narayana;Seo, Young-Kyo;Lee, Beom-Seok;Baek, Sung-Ok
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.147-168
    • /
    • 2012
  • Among all hazardous air pollutants, polycyclic aromatic hydrocarbons (PAHs) are more significant owing to their carcinogenic, mutagenic and teratogenic properties. Many researchers worldwide have focused on determining the concentrations of PAHs in ambient air. However, the literature survey reveals that the seriousness of air pollution in Asia in terms of PAHs, compared to the rest of the world. Owing to the importance of PAHs in Asia, this paper reviews the concentrations of PAHs in Asia in recent years. For convenience, this paper describes the concentrations of PAHs in developed Asian countries reported during 2000-2011 as Part-I and in developing Asian countries as Part-II. The first section of this review provides a brief description of the properties, sources of PAHs and the health effects caused by their presence in the atmosphere. The ambient air PAH concentrations in both particle and vapor phases in developed Asian countries are then discussed. This study finds the ambient air concentrations of PAHs in developed Asian countries was higher than the Western countries but was lower than the developing Asian countries. The present review predicts the accurate toxicity due to the presence of PAHs in the atmosphere by calculating the Risk Weighted Concentration (RWC), regardless of the total amount of PAHs. The total data obtained during the literature survey is tabulated and presented as supplementary information to the readers.

Antioxidant Enzymes and Photosynthetic Responses to Drought Stress of Three Canna edulis Cultivars

  • Zhang, Wen-E;Wang, Fei;Pan, Xue-Jun;Tian, Zhi-Guo;Zhao, Xiu-Ming
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.677-686
    • /
    • 2013
  • Edible canna is a productive starch source in some tropical and semitropical regions. In these regions, water deficit stress is one of factors that limit the crop yield. In the present study, we investigated seven physiological indexes and photosynthetic responses of three edible canna (Canna edulis Ker.) cultivars ('PLRF', 'Xingyu-1', and 'Xingyu-2') under 35 days drought stress. Our results indicated that drought treatment caused visible wilting symptoms in all cultivars, especially in 'Xingyu-1'. Coupled with the increase of wilting symptoms, relative water content (RWC) and chlorophyll content decreased progressively, malondialdehyde (MDA) content gradually increased, and key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities increased first and then decreased in all three cultivars. The effect of water stress was more pronounced in 'Xingyu-1' than in 'PLRF' and 'Xingyu-2', and in lower leaves than in upper leaves. In addition, 35 days drought stress also significantly reduced the photosynthetic capacity. Consistent with antioxidant parameters, photosynthetic changes of 'Xingyu-2' were less than those of the other cultivars under water deficit stress. Drought stress caused a significant increase of water use efficiency (WUE) in 'Xingyu-2', but little in 'PLRF', and obvious decrease in 'Xingyu-1'. These results indicated that 'Xingyu-2' was more tolerant to drought stress than 'PLRF' and 'Xingyu-1' by maintaining lower lipid peroxidation and higher antioxidant enzyme activities.

Crystalline Style Morphology in Three Species of Bivalve (Tegillarca granosa, Mytilus galloprovincialis and Saxidomus purpuratus) (이매패류 3종 (꼬막, 지중해담치, 개조개) 의 당면체 형태)

  • Ju, Sun-Mi;Park, Ji-Seon;Lee, Jung-Sick
    • The Korean Journal of Malacology
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2010
  • The location of the style sac and morphology of the crystalline style were described morphologically in three bivalve species (Tegillarca granosa, Mytilus galloprovincialis and Saxidomus purpuratus) which inhabited in different area. The style sac of them was connected to the posterior stomach. There was the crystalline style in the style sac. The crystalline style of three species was long circular cone of translucent gelatin form, which was hard and elastic. There was a red-yellow and spiral filament inside the crystalline style of Tegillarca granosa and Mytilus galloprovincialis. A white and long tube was located from basal portion to the end of crystalline style in Saxidomus purpuratus. RLC (relative length of crystalline style) of Tegillarca granosa, Mytilus galloprovincialis and Saxidomus purpuratus was 47.69, 48.97, 64.20% and RWC (relative weight of crystalline style) was 0.54, 0.54, 0.39%, respectively.

Exogenous proline mitigates the detrimental effects of saline and alkaline stresses in Leymus chinensis (Trin.)

  • Sun, Yan-Lin;Hong, Soon-Kwan
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.529-538
    • /
    • 2010
  • Proline accumulates in plants under environmental stresses including saline stress and alkaline stress. Here, we investigated the responses to two different stresses, saline stress (200 mM NaCl) and alkaline stress (100 mM $Na_2CO_3$) in two Leymus chinensis (Trin.) genotypes, LcWT07 and LcJS0107, and effects of exogenous proline on the activities of antioxidant enzymes. Both saline stress and alkaline stress significantly induced the accumulation of proline in leaves of the two genotypes after 96 h, and alkaline stress caused a transient and significant increase in LcJS0107 plants at 6 h. A reduction in the activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11), but not in the activity of superoxide dismutase (SOD, EC 1.15.1.1), was detected in plants exposed to saline and alkaline stresses. Remarkable decrease in relative water contents (RWC) was found in 144 h stressed plants. However, lipid peroxidation estimated by malonyldialdehyde (MDA) content in leaves remained relatively stable. With the addition of exogenous proline, it did not cause changes of proline levels in two genotypes, but combined with saline or alkaline stress, the exogenous application of proline significantly induced proline accumulation after even short treatment periods. Combined with salt stress, the exogenous application also increased the activities of CAT and APX. These results indicated that exogenous proline not only increases proline levels in vivo as a osmotic adjustment under stress, but mitigates the detrimental effects of saline and alkaline stresses by increasing the activities of antioxidant enzymes.

Lignification in Relation to the Influence of Water-deficit Stress in Brassica napus

  • Lee, Bok-Rye;Zhang, Qian;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • To investigate lignification process and its physiological significance under water-deficit condition, the responses of peroxidases, polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) in relation to leaf water status to the short term of water deficit treatment in the leaves with different maturities in forage rape were measured. The significant decrease in relative water content (RWC) and leaf osmotic potential (${\Psi}{\pi}$) were apparent after 5 d of water-deficit treatment. The activity of guaiacol peroxidase (GPOD), ascorbate peroxidase (APOD), coniferyl alcohol peroxidase (CPOD), and syringaldazine peroxidase (SPOD) was depressed especially in middle and old leaves when compared with that of control leaves. On the other hand, in young leaves, a significant increase in CPOD (+34%) and SPOD (+24%) activity as affected by water-deficit treatment was apparent. The activation of PAL and PPO was observed in middle and old leaves for PAL and in young and middle leaves for PPO. These results suggest that peroxidases in middle and old leaves did not involve in lignification under mild water-deficit stress, whereas CPOD and SPOD in young leaves participate in lignification by a coordination with PAL and PPO to incorporate phenol and lignin into the cell walls.

Evaluation of Drought Tolerance for Biomass Production of Salix gracilistyla Miq.

  • Hyun Jin Song;Seong Hyeon Yong;Hak Gon Kim;Kwan Been Park;Do Hyeon Kim;Seung A Cha;Ji Hyun Lee;Myung Suk Choi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.246-253
    • /
    • 2023
  • Salix gracilistyla is widely distributed along riversides in Korea and very good for biomass production by SRC because of its excellent germination ability, but it is necessary to measure drying tolerance for cultivation. The drought tolerance of S. gracilistyla was tested using cuttings, and growth and physiological analysis were performed after irrigation was stopped. The growth inhibition of S. gracilistyla was observed from the day irrigation was stopped, and the soil moisture content decreased to less than 10% on the 25th day after irrigation was stopped. Over 50% of the seedlings turned brown 25 days after watering was stopped. The chlorophyll content of S. gracilistyla decreased dramatically after 25 days of stopping of irrigation. RWC values were unchanged until day 12 after irrigation was stopped but decreased rapidly until day 21, but there was a slightly decreasing trend after that. RWL levels increased slightly during irrigation stops. The proline content of plants subjected to drought stress was 0.91-2.63 mg/0.05 g, 2.75 times higher than that of the control treatment. The sugar content of the drought stress treatment group was 29.77 to 350.66 mg/0.05 g, which increased 12.24 times that of the control treatment. As a result of this study, S. gracilistyla was found to have a drought tolerance almost comparable to that of evergreen broad-leaved trees growing on the land. This study is expected to contribute to the resource utilization S. gracilistyla, a native willow tree of Korea, and the mass production of biomass by SRC.

Physiological Responses to Drought Stress of Seven Evergreen Hardwood Species (상록활엽수 7수종의 건조스트레스에 대한 생리적 반응)

  • Jin, Eon-Ju;Cho, Min-Gi;Bae, Eun-Ji;Park, Junhyeong;Lee, Kwang-Soo;Choi, Myung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • This research aims to analyze and compare the drought resistance of 7 species of landscape trees commonly grown in Korea. The 7 species are: Camellia japonica, Rhaphiolepis indica, Quercus glauca, Machilus thunbergii, Daphniphyllum macropodum, Dendropanax morbifera and Cinnamomum camphora. In order to analyze their drought resistance, the samples were left without irrigation for 30 days (05/09/2016 ~ 05/10/2016), during which period their respective drought resistor, relative water content, electrolyte elution figures and proline content were measured. As the non-irrigation proceeded, C. camphora was the first to wither, followed by D. morbifera, then D. macropodum, then M. thunbergii, then Q. glauca, then R. indica then finally C. japonica. Of the 7 species, Q. glauca, C. japonica and R. indica can be considered highly drought resistant, since they survived for longer than 3 weeks without irrigation. Relative water content (RWC) plummeted dramatically after the first 15 days of non-irrigation. Whereas RWC readings of C. camphora, D. morbifera, D. macropodum and M. tunbergii dropped by 40% or more, the other 4 species reported a relatively low rate of decrease at 20% or lower. The Camellia japonica, the R. indica and Q. glauca, which were the species with relatively high drought resistance, showed low proline content and electrolyte elution figures, whereas those of C. camphora, D. macropodum, D. morbifera and M. tunbergii were higher. Analysis through the nonlinear regression analysis logistic model showed that non-irrigation proved fatal for the 7 sample species in a range of 22.7 to 37.6 days. The C. japonica, R. indica, Q. glauca and M. tunbergii demonstrated a high drought resistance of 30 days or longer, whereas C. camphora, D. morbifera and D. macropodum had a low resistance of 25 days or less to drought from lack of water. In conclusion, out of the 7 species of broad-leaved evergreen trees tested, C. japonica, R. indica and Q. glauca seem to be suitable for use as landscape trees, owing to their high drought resistance.