• Title/Summary/Keyword: RV(Reduction ratio of variator)

Search Result 2, Processing Time 0.014 seconds

Development of Toroidal Type Continuously Variable-Speed Transmission for Agricultural Tractor(2): Control System (트랙터용 토로이달식 무단변속기 개발(2): 제어 시스템)

  • 김의한;이재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.114-121
    • /
    • 2002
  • This paper describes the control system of the toroidal traction driver continuously variable-speed transmission(CVT) fur a tractor. The instrumentation system, the hydraulic power control system and the principle control scheme were introduced. Experimental tests in the bench and the tractor were conducted to validate the performance of the CVT utilizing the proposed controller. The speed of the vehicle was continuously changed to follow the speed set by driver under various operating conditions. Given the reduction ratio of the variator from 2.0 to 1.0, the settling time was about just 0.52 seconds which was satisfactory value for working with the tractor. It was also proved that the tractor could work with continuously variable speed under heavy load disturbances.

Development of Toroidal Type Continuously Variable-Speed Transmission for Agricultural Tractor(1): Transmission Mechanism (트랙터용 토로이달식 무단변속기 개발(1): 변속기 메커니즘)

  • 김의한;이재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.218-226
    • /
    • 2002
  • This study was carried out to develop continuously variable-speed transmission(CVT) fur an agricultural tractor. The full-toroidal variator mechanism with flour discs and six rollers was utilized as a device fur changing speed ratio continuously. In system layout design, the sizes of the roller cylinders and the end-load cylinder, which were critical factors for controlling the variator, were designed. The planetary gear unit and six pairs of the gear assemblies were designed to establish the maximum speed of the vehicle at 30 ㎞/hr. In addition, the hydraulic clutch, the silent chain, the hydraulic manifold and the electronic controller were designed. Based on the design, a prototype CVT was developed and tested. Test results show that the CVT developed in this study could successfully provide variable speed of the tractor.