• Title/Summary/Keyword: RTK 시스템

Search Result 140, Processing Time 0.022 seconds

Development of GNSS-only On The Move-RTK Technique for Highly Maneuvering Ground Vehicles

  • Jeon, Jong-Hwa;Yoo, Sang-Hoon;Choi, Jeung-Won;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.235-243
    • /
    • 2018
  • Conventional Real Time Kinematics (RTK) collect measurements in stationary state for several minutes to resolve the integer ambiguity in the carrier phase measurement or resolve the integer ambiguity on the move assuming low maneuvering movement. In this paper, an On The Move-RTK (OTM-RTK) technique that resolves the integer ambiguity on the move for fast and precise positioning of ground vehicles such as high maneuvering vehicles was proposed. The OTM-RTK estimates the precise amount of movement between epochs using the carrier phase measurements acquired on the move, and by using this, resolves the integer ambiguity within a short period of time by evaluating the integer ambiguity candidates for each epoch. This study analyzed the integer ambiguity resolution performance using field driving experiment data in order to verify the performance of the proposed method. The results of the experiment showed that the precise trajectory including the initial position bias can be obtained prior to resolving the integer ambiguity, and after resolving the integer ambiguity on the move, it was possible to obtain the bias-corrected precise position solution. It was confirmed that the integer ambiguity can be resolved by collecting measurements of about 10 epochs from the moving vehicle using a dual frequency receiver.

Accuracy Evaluation of Internet RTK GPS by Satellite Signal Reception Environment (위성 수신환경 변화에 따른 인터넷 RTK GPS 측량의 정확도 평가)

  • Kim, Min Gyu;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.277-283
    • /
    • 2013
  • GPS RTK surveying has an issue that the positioning error increases as the base line distance between the reference station and rover station increases. However, nowadays, an accuracy assessment that can handle such issue is surely required because of the modernization of GLONASS, Galileo project, and other improvements of satellite receiving conditions. Therefore, in this research, we compared and analyzed data sets collected with the CORS network, placed at NGII and NDGPS, using Internet RTK surveying in different satellite receiving conditions. As a result, there was a negative effect on the positioning accuracy as the base line distance increases. Furthermore, we could collect quantitative data of the accuracy of RTK surveying. When national-wide GNSS system is fully established, this result will contribute the growth of various GNSS industries including survey industries and land survey industries.

An Application of VRS-RTK Surveying in Construction Site (건설현장에서의 VRS-RTK측량 적용성 검토)

  • Kim, In-Seup;Joo, Hyun-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.6
    • /
    • pp.625-631
    • /
    • 2008
  • Correct evaluation of cut and fill volume of soil is one of the most important factors which controls construction cost in enormous construction sites. To achieve accurate computation of soil volume in construction site precise surveying is required, however most of construction sites adopt existing optical surveying instruments such as Total Station. The problem when using these optical instruments in construction sites is that these instruments take longer time in data acquisition. Due to insufficiency of computation time accurate and precise observation cannot be accomplished with these equipments. As a result roughly calculated earthwork volume may cause arguments between contractors and supervisors in the matter of reduction or increasement of total construction cost. In this study VRS-RTK Surveying is adopted to perform fast and accurate in-situ surveying for rapid computation of soil volume. This VRS-RTK Surveying system is proved to have more accurate three dimensional coordinates with high density and better economical solution with less manpower.

Development of MATLAB GUI Based Software for Generating Multi-GNSS Network RTK MAC Correction (MATLAB GUI 기반 다중 위성군 Network RTK MAC 보정정보 생성 소프트웨어 개발)

  • Bu-Gyeom Kim;Changdon Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.412-417
    • /
    • 2022
  • In this paper, multi-GNSS network RTK MAC correction generation software developed based on MATLAB GUI is introduced. The software was developed as a post-processing software based on simulation data to evaluate the feasibility of an algorithm for generating correction for multi-GNSS including GPS, GLONASS, and Galileo. As a result of software operation, network RTK correction for each system of multi-GNSS is output in MATLAB file format. In this paper, to evaluate the performance of the developed software, the residual error was analyzed after applying the correction generated through the software to the user. As a result of the analysis, it was confirmed that effective network RTK correction could be generated by confirming that the residual errors of users were maintained at 10 cm or less.

Evaluation of RTK Methods for Moving Vehicles and Practical Recommendations

  • Kim, Sae-Kyeol;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.253-262
    • /
    • 2021
  • Global Navigation Satellite Systems (GNSS) based precise positioning using Real Time Kinematic (RTK) technique has been proposed as an enabler of the formation operation of moving vehicles. In RTK methods, the integer ambiguity of GNSS carrier phase measurements must be resolved. Although there have been many proposed algorithms for the integer ambiguity resolution, the widelane combination of carrier phase measurements and LAMBDA methods have gained the most popularity in literatures when dual frequency GNSS measurements were used. In this paper, we evaluated five alternative methods to determine relative positions of moving base and rover receivers; the round-off scheme of widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with dual frequency measurements. The paper presented the performance of each method using flight test data, which showed their strength and weakness in the aspects of time-to-first-fix, ambiguity resolution success ratio, and relative position errors. Based on that, we provided practical recommendations of RTK operations for moving vehicles.

Evaluation of N-RTK Positioning Accuracy for Moving Platform (기선 거리에 따른 이동체의 N-RTK 위치정확도 평가)

  • Kim, Min-Seo;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2020
  • For real-time precise positioning, N-RTK (Network Real-Time Kinematic) technology is widely used these days. However, the currently operating N-RTK system has a limitation in terms of the number of users. Therefore, if reference points generate correction messages with no limit on the number of users are developed later, it is determined that an appropriate reference point installation interval is required, so that the accuracy of the N-RTK system according to the baseline distance was analyzed. This experiment utilized receivers with varying performance that estimated the rover position, and RTKLIB, an open-source software, is used for processing data. As a result, the rover position was estimated accurately with a high rate of fixed ambiguity for all the receivers. When the reference station with a baseline length of 40 km was used, the vertical RMSE (Root Mean Squared Error) was quite similar to the short baseline case, but only half of the ambiguity fixing rate was achieved. The outlier in the estimated rover position was not observed for the longer baselines in the case of a high-end receiver. It is necessary to analyze the ambiguity fixing and the accuracy of the kinematic positioning with scientific GNSS processing software.

A Development of Displacement Monitoring System by GPS (GPS에 의한 변위 모니터링시스템 개발)

  • 최병길;문일용;이수영;김성표
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2001.10a
    • /
    • pp.71-82
    • /
    • 2001
  • 인공위성을 이용한 범 지구 위치결정시스템인 GPS(Global Positioning System)는 수 밀리의 정밀도로 정적, 동적 위치측정이 가능한 시스템으로 교량, 건축물, 댐 등 각종 구조물의 미세한 변위를 측정하는데 이용되고 있다. 최근 국내에서도 대형구조물의 변위 측정에 GPS를 활용하려는 시도가 부분적으로 이루어지고 있으나 초보적인 단계이며 체계적인 연구가 이루어지지 못하고 있는 실정이다. 본 연구에서는 RTK(Real Time Kinematic) GPS로 구조물의 변위를 실시간 측정하고 모니터링 할 수 있는 시스템을 개발하였다. 먼저 예비실험으로 반송파의 차분에 의해서 증폭되는 수신기의 측정잡음 오차, 다중경로 오차, GDOP(Geometric Dilution of Precision)가 RTK GPS의 위치정확도에 미치는 영향을 분석하였다. 그리고, RTK GPS를 이용하여 마포대교를 관측한 결과, 수 센티미터 정도 발생하는 구조물의 변위를 3차원으로 정밀 관측할 수 있었으며, 본 연구에서 개발한 모니터링프로그램을 이용하여 구조물의 거동을 실시간으로 모니터링 할 수 있었다.

  • PDF

Development of Earth Fill Management System using Real-Time Kinematic GPS (실시간 GPS를 이용한 현장 성토다짐 관리시스템 개발)

  • 심정민;윤홍식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.271-279
    • /
    • 1998
  • This paper discusses the development of compaction management system using Real Time Kinematic (RTK) GPS technology for the efficient management or compaction. The use or RTK provides the land surveyors with a graphical display of his/her corrected position on the ground at that moment in time. In this work, we intended to improve the efficiency of compaction management showing the route of rollers and the total number of compaction obtained from management software (GPSROLL v.1.0) developed in this study. The RTK GPS system installed on the roller. To improve the efficiency of field management, GPSROLL software provides also data processing module for the field soil test and the field surveying data. GPSROLL system is based on the Korean GUI for user-friendly data input and output.

  • PDF

Monitoring QZSS CLAS-based VRS-RTK Positioning Performance

  • Lim, Cheolsoon;Lee, Yebin;Cha, Yunho;Park, Byungwoon;Park, Sul Gee;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.251-261
    • /
    • 2022
  • The Centimeter Level Augmentation Service (CLAS) is the Precise Point Positioning (PPP) - Real Time Kinematic (RTK) correction service utilizing the Quasi-Zenith Satellite System (QZSS) L6 (1278.65 MHz) signal to broadcast the Global Navigation Satellite System (GNSS) error corrections. Compact State-Space Representation (CSSR) corrections for mitigating GNSS measurement error sources such as satellite orbit, clock, code and phase biases, tropospheric error, ionospheric error are estimated from the ground segment of QZSS CLAS using the code and carrier-phase measurements collected in the Japan's GNSS Earth Observation Network (GEONET). Since the CLAS service begun on November 1, 2018, users with dedicated receivers can perform cm-level precise positioning using CSSR corrections. In this paper, CLAS-based VRS-RTK performance evaluation was performed using Global Positioning System (GPS) observables collected from the refence station, TSK2, located in Japan. As a result of performing GPS-only RTK positioning using the open-source software CLASLIB and RTKLIB, it took about 15 minutes to resolve the carrier-phase ambiguities, and the RTK fix rate was only about 41%. Also, the Root Mean Squares (RMS) values of position errors (fixed only) are about 4cm horizontally and 7 cm vertically.

Performance Test of Broadcast-RTK System in Korea Region Using Commercial High-Precision GNSS Receiver for Autonomous Vehicle

  • Ahn, Sang-Hoon;Song, Young-Jin;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.351-360
    • /
    • 2022
  • Autonomous vehicles require precise knowledge of their position, velocity and orientation in all weather and traffic conditions in any time. And, these information is effectively used for path planning, perception, and control that are key factors for safety of vehicle driving. For this purpose, a high precision GNSS technology is widely adopted in autonomous vehicles as a core localization and navigation method. However, due to the lack of infrastructure as well as cost issue regarding GNSS correction data communication, only a few high precision GNSS technology will be available for future commercial autonomous vehicles. Recently, a high precision GNSS sensor that is based on a Broadcast-RTK system to dramatically reduce network maintenance cost by utilizing the existing broadcasting network is released. In this paper, we present the performance test result of the broadcast-RTK-based commercial high precision GNSS receiver to test the feasibility of the system for autonomous driving in Korea. Massive measurement campaigns covering of Korea region were performed, and the obtained measurements were analyzed in terms of ambiguity fixing rate, integer ambiguity loss recovery, time to retry ambiguity fixing, average correction information update rate as well as accuracy in comparison to other high precision systems.