• Title/Summary/Keyword: RT(tensile resilience)

Search Result 9, Processing Time 0.027 seconds

Effect of Aftertreatments for Washing on Mechanical Properties of Knitted Fabrics (세탁수처리제가 편성물의 역학적 특성치에 미치는 영향)

  • Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.3 no.2
    • /
    • pp.174-179
    • /
    • 2001
  • This study investigated the effect of aftertreatments such as using the softener or starch on the mechanical properties of knitted fabrics. The mechanical properties of fabrics, hand value(HV) and total hand value(THV) were measured and calculated by the KES-F system. The main results are as follows: The values of tensile energy(WT), coefficient of friction(MIU) and geometrical roughness(SMD) were increased by softener but decreased by starch treatment. However, the values of tensile linearity(LT), bending(B, 2HB), thickness(T) and weight(W) were increased by starch but decreased by softener treatment. Tensile resilience(RT) was increased not only by softener but also by starch treatment. It showed that the levels of FUKURAMI, NUMERI and SOFUTOSA were increased by the treatment of softener and the levels of KOSHI and SHARI were increased by the treatment of starch. Total hand value(THV) was lower in fabric with starch treatment than fabric with none treatment.

  • PDF

Relationship between Rustling Sounds and Physical Properties of Suiting fabrics (슈트용 직물의 스치는 소리와 물성간의 관계)

  • 조길수;이은주
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.271-276
    • /
    • 1999
  • This study was carried out to investigate the relationship between sound color and physical propertiessuiting fabrics. Rustling sounds of 23 suiting fabrics by sound generator developed for this study were recorded and analysed through FFT analysis. Three sound color factor(ΔL Δf. LPT) were obtained.Physical properties of specimens were measured by KES-FB. Level range(L) showed significant correlation with tensile resilience(RT) and thickness (T). Frequency difference(Δf) showed significant correlation with tensile linearity(LT), shear properties(G, 2HG, 2HG5), compressional energy(WC), and weight(W). Total sound pressure (LPT) showed significant correlation with elongation at maximum load (EM), tensile linearity(LY), and tesile energy(WT). By stepwise regression LPT was found to be explained by EM, MIU, RC, LT significantly.

  • PDF

The Study on the Effect of Plasma Pre-treatment on the Dyeing Properties and the Handle in the Environment Friendly Enzyme Finishing (친환경 효소가공에서 플라즈마 전처리가 염색성과 태에 미치는 영향)

  • Kim, Ji-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2008
  • Cotton, wool, cotton/wool blended (80:20) and tencel fabrics were treated with low temperature oxygen plasma, enzymes (cellulase or protease), or oxygen plasma-enzyme and they were examined for dyeing and handling properties for environment friendly finishing. The appropriate conditions for cellulase treatment were enzyme concentration of 3g/l, pH of 5, and $60^{\circ}C$ for one hour, and for protease treatment were enzyme concentration of 4g/l, pH of 8, and $60^{\circ}C$ for one hour. The equilibrium uptake of a direct dye on cotton changed with plasma treatment and plasma-cellulase treatment, and the rate of dyeing slightly decreased. When wool was dyed with acid dye, the equilibrium dye uptake did not change with plasma, protease treatment nor plasma-protease treatment, however, the rate of dyeing had increased with plasma-protease treatment. From these results, it is assumed that plasma attacks the surface of the fiber, and enzyme mainly affects the inner part of the fiber. Plasma treatment did not affect mechanical properties related to the handling of fabrics. The handling test showed increased extension at maxmum load(EM), tensile energy(WT) with decreased tensile resilience (RT), and the fabrics became softer but resilience decreased slightly with enzyme treatment. The bending recidity(B), hysteresis of bending moment(2HB), and hysteresis of shear force at five degrees(2HG5) decreased, however, shear stiffness(G) increased. I knew the plasma pre-treatment made fabrics softer with lower koshi(stiffness). The handling of plasma pre-treated fabrics was better than that of enzyme-treated fabrics. When we pre-treated fabrics, the handling test showed decreased coefficient of friction(MIU), geometrical roughness(SMD), while the surface of fabrics became smoother and numeri increased. Even though compression resilience(RC) increased, fukurami(bulky property) and compressive elasticity, decreased due to the linearity of compression-thickness curve(LC) and compression energy(WC).

  • PDF

A Study on the Mechanical and Hand Properties of the Lining Fabrics (의복 안감의 역학적 특성 및 태 평가)

  • Kim, Myung-Ok;Uh, Mi-Kyung;Park, Myung-Ja
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.357-362
    • /
    • 2006
  • This study is to evaluate the objective sensibility of the commercial lining fabrics. Five kinds of the linings were collected by adding taffetas with four kinds of fibers (polyester, nylon, rayon, and acetate) to one polyester stretch fabric. The six basic mechanical and hand properties were studied by using KES-FB system (Kawabata Evaluation System). The result of measuring the mechanical properties shows that polyester has high bending rigidity (B), that polyester-stretch has a high value of linearity of load-extension curve (LT), tensile energy (WT), tensile resilience (RT), and coefficient of friction (MIU) and a low value of bending rigidity(B), shear property, and geometrical roughness (SMD). The nylon has a high value of bending rigidity (B), shear property, and compression resilience (RC). The rayon has a high value of coefficient of friction (MIU) and linearity of compression-thickness curve (LC) and a low value of shear property, and the acetate has a low value of shear property. The result of hand value shows that polyester, nylon, and acetate are a high value of KOSHI (stiffness), NUMERI (smoothness), and FUKURAM (fullness & softness), and they feel stiff and massive, that rayon has a low value of NUMERI and FUKURAMI. The total result of hand value shows that polyester taffeta and polyester stretch fabric are about the same as the best material for the lining of a woman's dress for spring and summer, and the next thing is acetate, but nylon and rayon are somewhat inferior materials. This provides a fundamental data for the comfortable clothing production of a higher value-added product through the study on the mechanical and hand properties of the lining as well as the right side of fabrics.

A Study on the Possibility of Using Fire-Retardant Working Cloth Made from Silicon Carbide (SiC) Composite Spun Yarns (Silicon Carbide (SiC) 복합방적사로부터 제조된 원단의 방화복 활용 가능성에 관한 연구)

  • Kang, Hyun-Ju;Kang, Gun-Woong;Kwon, Oh-Hoon;Kwon, Hyeon-Myoung;Hwang, Ye-Eun;Jeon, Hye-Ji;Joo, Jong-Hyun;Park, Yong-Wan
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2021
  • The mechanical properties of a woven fabric made of SiC (silicon carbide) fibers were determined in this study using the KES-FB system. The woven fabric is used in high heat settings above 1500℃. Composite spun yarns were used to create SiC fibers. By analyzing the wearing properties, we studied the prospect of using the textiles as fire-retardant work clothes. Mechanical properties determine the wearing attributes. Therefore, the tensile linearity (LT), tensile resilience (RT), and shear stiffness (G) values of the fabric varied according to the yarn type (filament or spun yarn). The thickness, weight per square meter, and density of the fabric were found to have an effect on the shear hysteresis (2HG) and compression resilience (RC) values. In terms of wearable clothing qualities, the fabric qualities of the SiC composite yarn demonstrated the highest ratio of compressive energy to thickness (WC/T), which indicates bulkiness. The fabric manufactured from SiC composite yarns passed the KFI criteria for carbonation length and cumulative flame time in the flame-retardant test. Therefore, we discovered that the material can be used as a fire-resistant work cloth.

Mechanical Properties and Fabric Handle of Grafted Silk Fabrics (그라프트 가공 견직물의 力學特性과 태의 分析硏究)

  • Kim, Kyu Beom;Chin, Young Gil
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.52-58
    • /
    • 1996
  • In order to study an applicable level for the graft finish of silk filaments and the characteristics of silk fabric, some sample fabrics were woven with grafted weft and the characteristics of sample fabrics were analyzed to evaluate the mechanical properites and the handle values according to the graft yield(%) of MMA and HEMA monomers on silk filaments. 1. The tensile properties were detected in the increase of linearity(LT) and the recovery in time of the increasing resilience(RT). 2. The bending properties were detected to have a lot of effect on the balance of bending rigidity(B) to hysteresis(2HB) according to the elastic relaxation of warp tension and the interlacing stress. 3. The shearing properities were detected to show the softness and the elastics in a case of the decrease in shearing rigidity(G) and hysteresis(2HG, 2HG5) according to the graft yields. 4. The compression properties were detected in the decrease of linearity(LC) and the uniformity of resilience(RC). It explains that the tendancies of compressible variation is not accepted. 5. The surface properities were detected to be affected by the surface forms of grafted silk filaments and the variation in the morphologies of interlacing sections. Considering the interlacing eveness, MMA grafted fabrics were accepted within the level of WOMEN'S THIN DRESS(KN-201-LDY) but HEMA grafted fabrics were not accepted. 6. The variation of handles were detected in the increase of total hand(TAV) within the levels of 65% of KOSHI and 82% of HARI on the average. 7. The handle fashions were detected in the nature of Habuta and Dechine from MAA graft but the nature of Fugi were shaped from HEMA graft in proportion to the graft yields.

  • PDF

The Extraction of Co-PET from Non-Woven Fabrics of Nylon/Co-PET Sea-island Type Composite Microfiber

  • Park, Myung-Soo;Yoon, Jong-Ho;Cho, Dae-Hyun
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2001
  • To find a suitable condition in this process examined, we investigated the main control factors, such as, the NaOH concentrations, such as, the NaOH concentrations, the heat treating times, and the heating temperatures. The resulting mechanical properties of the fabrics also studied. The samples used were Nylon/Co-PET sea-island type composite microfiber (Co-PET content: 35%) non-woven fabric. The conclusions obtained were as follows. 1. For the complete extraction of Co-PET from the sample non-woven fabric in the dry hot air process, $160^{\circ}C$ of air temperature, 15 min. of treatment time, and around 30% of NaOH concentration were required. On the other hand, in the wet hot air process, $140^{\circ}C$ of air temperature, 3.5 min. of treatment time, and around 30% of NaOH concentration were required. 2. The mechanical properties of the continuous processed samples showed that the WT, B, and WC increased with increasing the weight reduction ratio. However, the G, decreased with increasing the weight loss ratio. Note that, particularly in B, it increased drastically when the weight deduction ratios exceeded 30%. 3. As increasing the wet hot air temperature from 130 to $140^{\circ}C$, B appeared to increase, however, WT, G, and WC appeared to decrease. 4. The best condition found in this continuous process to extract Co-PET is the wet hot air temperature of 140, NaOH concentration of 28% or above, and the treatment time 2-4 min.

  • PDF

Tactile Sensibility Factors of Traditional Silk Fabrics (전통 견직물의 촉각적 감성요인)

  • Yi, Eun-Jou
    • Science of Emotion and Sensibility
    • /
    • v.10 no.1
    • /
    • pp.99-111
    • /
    • 2007
  • In order to identify tactile sensibility factors of traditional silk fabrics and to provide prediction models for the sensibility factors by mechanical properties, seventeen different traditional silk fabrics were evaluated in terms of both tactile sensation and sensibility by using a modified magnitude estimation line scale Gongdan and Newttong with lower values for surface roughness(SMD), bending rigidity(B), and compression resilience(RC) were rated as softer, smoother, fluffier, and more pliable in tactile sensation than any other traditional silk fabrics whereas Nobangju haying higher B, SMD, and tensile resilience(RT) was touched as crisper, more rustling, and springier. Three different tactile sensibility factors including 'Feminine', 'Natural', and 'Casual' were obtained significantly by grouping fifteen different tactile sensibility descriptors. In the prediction models sensibility 'Feminine' was explained positively by SMD, which was supported by the fact that both Gongdan and Newtton were perceived as more feminine. Sensibility 'Natural' that was felt stronger as for Myoungju and Sa was predicted negatively by both fabric thickness(T) and RT. Finally, RC, elongation at maximum load (EM), and T predicted sensibility 'Casual' negatively, which results in its higher factor scores for Myoungju and Shantung, respectively.

  • PDF

The Effects of Sewing Thread Materials and Sewing Methods on Mechanical Properties of Knitwear (봉제원사와 봉제방법에 따른 니트웨어의 역학적 특성)

  • Kang, Sook-Nyeo;Kwen, Jin
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.2 s.111
    • /
    • pp.1-10
    • /
    • 2007
  • This study aims at the improvement of sewing function through understandings of dynamic property about the sewing methods and the thread material selection in knitwear. The tensile strength and shear of KES-FB and the Instron were measured for the analysis of the mechanical properties. The knit cloth was structured In the plain stitch, $1\times1$ rib stitch and $2\times1$ rib stitch with the combination of wool and cotton. With regard to the sewing method, intralooping and interlacing were applied. For thread materials, polyester, cotton, wool and silk were used. Since silk has the lowest extension and similar values regardless of its construction in intralooping, it is available knit apparel with uniform elastic recoverv. It also has small shearing resistance. It can be used in apparel which needs big mobility, but it causes rutting problem. Therefore, it is suitable to use intralooping. When the same sewing yarn and textile are use, it can lower shearing resistance and extension in intralooping, Since wool needs a lot of extension energy and it can be cut, intralooping is more suitable than interlacing in sewing of wool. In interlacing using polyester, extension and shearing resistance are high. Therefore, it is suitable for knit sewing with high massing. Silk is not suitable for interlacing since it can be rut. Even though knit materials are different, the RT values of polyester and cotton are similar in same construction. Therefore, they can be substituted each other considering resilience after sewing.