• Title/Summary/Keyword: RSU

Search Result 100, Processing Time 0.031 seconds

Accident Information Based Reliability Estimation Model for Car Insurance Smart Contract (자동차보험용 스마트 컨트랙트를 위한 사고정보 기반 신뢰도 산정 모델)

  • Lee, Soojin;Kim, Aeyoung;Seo, Seung-Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.4
    • /
    • pp.89-100
    • /
    • 2020
  • In order to reduce the time and cost used in insurance processing, studies have been actively carried out to apply blockchain smart contract technology to car insurance. However, by using traffic data that is insufficient to prove accidents, existing studies are being exposed to the risk of insurance fraud, such as forgery and overstated damage by malicious insurers. To solve this problem, we propose an accident data-based reliability estimation model by using both various types of data through sensors, RSUs, and IoT devices embedded in automobiles and smart contracts. In particular, the regression model was applied in consideration of the weight estimation according to the type of traffic accident data and the reliability estimation model trained according to various accident situations. The proposed model is expected to effectively reduce fraud and insurance litigation while providing transparency in the insurance process and streamlining it is well.

Implementation of WAVE system for ITS (지능형 도로 교통망을 위한 WAVE 시스템 구현)

  • Lee, Se-Yeun;Jeong, Han-Gyun;Shin, Dae-Kyo;Lim, Ki-Taeg;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.933-942
    • /
    • 2009
  • In this paper, the WAVE technology for IT based on Intelligent Transport System(ITS) which using by IEEE 802.11a PHY, IEEE 802.11p MAC(Medium Access Control) and IEEE P1609.3 was implemented. The WAVE system was designed that has maximum 0.5km communication range for RSU(Road Side Equipment) between vehicle, 12Mbps transfer speed when downlink at maximum 120km/h vehicle speed. To verify suitableness of the WAVE system for ITS, we measured several parameters on the real road: communication range when low and high speed, link establishment time, data transfer speed, PER (Percent Error Rate), and latency. From the experiment results, we demonstrated that WAVE is a suitable technology for IT based on ITS.

  • PDF

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

CRL Distribution Method based on the T-DMB Data Service for Vehicular Networks (차량통신에서 T-DMB 데이터 서비스에 기반한 인증서 취소 목록 배포 기법)

  • Kim, Hyun-Gon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.161-169
    • /
    • 2011
  • There is a consensus in the field of vehicular network security that public key cryptography should be used to secure communications. A certificate revocation list (CRL) should be distributed quickly to all the vehicles in the network to protect them from malicious users and malfunctioning equipment as well as to increase the overall security and safety of vehicular networks. Thus, a major challenge in vehicular networks is how to efficiently distribute CRLs. This paper proposes a CRL distribution method aided by terrestrial digital multimedia broadcasting (T-DMB). By using T-DMB data broadcasting channels as alternative communication channels, the proposed method can broaden the network coverage, achieve real-time delivery, and enhance transmission reliability. Even if roadside units are not deployed or only sparsely deployed, vehicles can obtain recent CRLs from the T-DMB infrastructure. A new transport protocol expert group (TPEG) CRL application was also designed for the purpose of broadcasting CRLs over the T-DMB infrastructure.

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

Data Transmission Performance Study of Wireless Channels over CCN-based VANETs (CCN 기반의 VANET에서 무선 채널에 따른 전송 성능에 관한 연구)

  • Kang, Seung-Seok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.367-373
    • /
    • 2022
  • VANET (Vehicular Ad hoc NETwork) is one of the special cases of the ad hoc networks in which car nodes communicate with each other and/or with RSUs (Road Side Unit) in order for the drivers to receive nearby road traffic information as well as for the passengers to retrieve nearby gas price or hotel information. In case of constructing VANET over CCN, users do not need to specify a destination server address rather to input a key word such as nearby congestion in order to gather surrounding traffic congestion information. Furthermore, each car node caches its retrieved data for forwarding other nodes when requested. In addition, the data transmission is inherently multicast, which implies fast data propagation to the participating car nodes. This paper measures and evaluates the data transmission performance of the VCCN (VANET over CCN) in which nodes are equipped with diverse wireless communication channels. The simulation result indicates that 802.11a shows the best performance of the data transmission against other wireless channels. Moreover, it indicates that VCCN improves overall data transmission and provides benefit to the nodes that request the same traffic information by exploiting inherent multicast communication.

Exploratory Investigation for Some Universities' E-Learning Systems during Covid-19 Pandemic

  • Fatima Rayan Awad, Ahmed;Thowiba E., Ahmed;Rashid A., Saeed;Elmustafa Sayed, Ali;Ghada Elnour Elterafi, Abdelrhman;Somia Yousif Ahmed, Abutiraima
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.160-170
    • /
    • 2022
  • COVID pandemic has reshaped the world as it has been known to us and the education system is one of the most affected by it. Due to social distancing, quarantines and isolations have made it impossible for the knowledge transition to the masses using conventional methods. For cope with pandemic, the only other way available for some of the fortunate countries is the use of E-learning having somewhat the same traditional teaching method. This paper is concerned with the study of the preparedness of the learning system in some Sudanese universities due to the impact of the COVID-19 pandemic. Critical analysis has been performed to evaluate the current developing scenario, usage of the facilities available in open-source platforms, and the interaction of the universities folks with e-learning systems. The impact of such measures has been thoroughly investigated in this paper for Sudan which is already deprived of a proper education system. The investigation shows that the interact of the staff and the students with the system was acceptable where more than 85% of those enrolled to the system were interact properly and efficiently. The lecturers conducted through the platform were attended with more than 75% of the students. We also found that most of the lecturer were avoid to exam students by utilize the platform; where only 45% of the uploaded courses were conducted exams over Moodle platform. As Moodle is an open source and still need to be improved to be used for high examination credibility.

Design of V2I Based Vehicle Identification number In a VANET Environment (VANET 환경에서 차대번호를 활용한 V2I기반의 통신 프로토콜 설계)

  • Lee, Joo-Kwan;Park, Byeong-Il;Park, Jae-Pyo;Jun, Mun-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7292-7301
    • /
    • 2014
  • With the development of IT Info-Communications technology, the vehicle with a combination of wireless-communication technology has resulted in significant research into the convergence of the component of existing traffic with information, electronics and communication technology. Intelligent Vehicle Communication is a Machine-to-Machine (M2M) concept of the Vehicle-to-Vehicle. The Vehicle-to-Infrastructure communication consists of safety and the ease of transportation. Security technologies must precede the effective Intelligent Vehicle Communication Structure, unlike the existing internet environment, where high-speed vehicle communication is with the security threats of a wireless communication environment and can receive unusual vehicle messages. In this paper, the Vehicle Identification number between the V2I and the secure message communication protocol was proposed using hash functions and a time stamp, and the validity of the vehicle was assessed. The proposed system was the performance evaluation section compared to the conventional technique at a rate VPKI aspect showed an approximate 44% reduction. The safety, including authentication, confidentiality, and privacy threats, were analyzed.

Design and Implementation of Sensor-based Secondary Vehicle Accident Prevention System (센서 기반의 차량 2차사고 방지 시스템 설계 및 구현)

  • Lim, Kyung-Gyun;Kim, Gea-Hee;Jeong, Seon-Mi;Mun, Hyung-Jin;Kim, Chang-Geun
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.313-321
    • /
    • 2017
  • Traffic accidents in the country have steadily increased. Although IOT technologies have been applied so as to prevent the primary accident, practical solutions to prevent the secondary accident have not been suggested. A general guideline is simply recommended. In this paper, utilizing existing communication technology, we implement a proposed model and its simulation to prevent the secondary accident. When it is possible for a driver to secure visibility, the secondary accident can be prevented; In areas like tunnel, mountain terrain, and curve road with heavy traffic, where the driver has difficulty in securing the visibility, the secondary accident rates after the primary accident have been increasing. Therefore, we implement an accident prevention system that determines the primary accident utilizing sensor technology and prevents the secondary accident communicating through V2V or V2I. After the simulation, we found that the proposed model and the existing model made no difference with regard to the secondary accident rates when the visibility of the driver is secured; With the application of the proposed model, however, the accident rates decreased for 3-7 percent even though the visibility and communication were not secured.

IEEE 802.11a Technnical Analysis and Research for Development of Unmanned Vehicle System (무인자동차 시스템 개발을 위한 IEEE 802.11a 기술 분석 및 연구)

  • Kim, Young-Hyuk;Choi, Sang-Wook;Lim, Il-Kwon;Choi, Jeong-Dan;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.108-111
    • /
    • 2009
  • In this paper, the development of unmanned vehicle systems to analysis applicable communications and alternative IEEE 802.11a. IEEE 802.11b/g uses the 2.4GHz. So, using the 5GHz OFDM in IEEE 802.11a interference phenomenon better. IEEE 802.11a has a maximum speed of 54Mbps. Indoors and apartment parking on experiment to soft roaming, hard roaming. Test equipments are AP four units(RSU), reliable results for the AP one unit Bridge, Switch one unit, one server notebook, one notebook(OBU), one car. Use Softwares are Wireshark, Jperf, Ping and million second transfer was used to develop the program. So the actual car was similar to the environment. With the results of the experiment for the unmanned vehicle systems will provide the best method.

  • PDF