• Title/Summary/Keyword: RSE (Road Side Equipment)

Search Result 26, Processing Time 0.024 seconds

The Estimation of the Number of Spare Parts and the Changing Time about DSRC Road Side Equipment (단거리전용통신방식 노변기지국의 예비부품수 및 교체시기 산정)

  • Han, Dae-Hee;Lee, Chung-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.174-182
    • /
    • 2007
  • There are not many studies on the maintenance and replacement for the ITS equipments. Most of ITS center has no comprehensive regulation on the equipment replacement. This study was focusing on estimation of equipment replacement period and the number of spare parts in stock using the actual failure data of Road Side Equipment (RSE) by Dedicated Short Range Communication (DSRC). The failure data showed a type of bath-tub curves. The data, however, did not fit to any probability distribution curve, which means that the preventive replacement cannot be strongly applied for the RSE. In the aspect of practical strategy, this study suggest that repairing cost and failure frequency be used for decision of replacement of RSE after the 1 or 2 year warrant period. The future study needs to include more RSE failure data as well as other equipments of the ITS.

  • PDF

The Design for Packet Transmission Technology of Vehicle and Base Station in the Intelligent Transport System (지능형 교통시스템에서 차량과 기지국의 패킷전송기술 설계)

  • Lee, Dae Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2013
  • In this paper which it is relating to the DSRC system based road side equipment, we propose the protocol stack architecture of road side equipment and the process structure of the main RM, L7 and LLC layers which is road side equipment device as well. And also we design the signal flow and data-transfer process as well between road side equipment and on board equipment to describe the installation process between road side equipment and von board equipment based on DSRC system. Thus, it is possible to provide various application services between intelligent transportation systems of road side equipment and local server, as well as it enables the local server managing the memorys of on board equipment which entry in service area thru the road side equipment.

The Design for DSRC Communication Technology of On Board Equipment in the Intelligent Transport System (지능형 교통체제에서 차량 단말장치의 DSRC 통신기술 설계)

  • Lee, Dae Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.135-142
    • /
    • 2012
  • DSRC system is a communication system that consists of road side equipment and on board equipment to provide services of communication technology for intelligent transportation systems. In this paper, we carry out a short-range dedicated high-speed wireless communications via DSRC system based on board equipment that is installed in the vehicle and road side equipment through wireless channels of communication. on board equipment is system that have a memory which initialization information is stored, it loads physical layer and MAC layer, LLC layer, L7 layer in turn. In the upper, it should analyze the various commands that are sent from roadside base stations, and carry out the operation which is in accordance with the command. and also it designs the structure of protocol stack which is TRM Layer loaded that is to initialize on L7 layer and MAC layer and efficiently designs operation between on board equipment and the road side equipment.

Development of RF system for Automatic Container Terminal (한국형 컨테이너 터미널 자동화를 위한 RF 시스템 개발)

  • 윤현성;이창호;변건식
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.41-44
    • /
    • 2000
  • In this paper, the dedicated short range communication(DSRC) system which used as the automatic gate system(AGS) Donga Univ. RRC developed is applied to yard automation. We proposed the communication algorithm of between roadside equipment(RSE) and on-board equipment(OBE). We analyzed transmitted and received information, classification and feature of between OBE and RSE for automation of the container yard and unloading system.

  • PDF

Coverage Extension of the Highway Dedicated Short Range Communication System based on a Fixed Relay

  • Choi, Kwang-Joo;Kim, Hak-Jae;Park, Sang-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • Dedicated Short Range Communication (DSRC) systems in urban areas are used to collect traffic information from vehicles and to provide vehicles with information received from Roadside Equipment (RSE) having a range of 100 meters (m). However, it is not practical to use RSE with a range of 100 m for express highways. In this paper, we expand the standard cell coverage of RSE to 300 m, and adopt fixed relays to cover sites that cannot communicate with the RSE. We demonstrate that the system using the fixed relays is more economical than using only RSE.

  • PDF

AVLS Using the Dedicated Wireless Communication between Vehicle and Road-Side Equipment (차량과 노변기지국간 전용 무선 데이터 통신을 이용한 차량위치 추적 시스템)

  • Hong, Sung-Bum;Lee, Jung-Gu;Na, Won;Choi, Un-Seok;Baek, Joong-Hwan;Hwang, Byung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2000
  • In this paper, we propose an AVLS(Automatic Vehicle Location System) using the DSRC(Dedicated Short Range Communication) which adopts a radio communication tool between RSE(Road-Side Equipment) and OBE(On-Board Equipment) on a vehicle and uses the ISM bandwidth of 5.8GHz radio frequency. Typical AVLS uses the sensors for detecting the vehicle, but the DSRC system is developed for supporting various services such as the position of vehicle, clearance, vehicle to vehicle communication, collection and distributions of traffic and road information. Also, for fast processing, we design three-layer configuration of physical(L1), data link(L2), and application layer(L7), which simplifies the seven-layer configuration. We suggest the proposed system as a new technology for replacement of typical wireless communication system and sensors for AVLS.

  • PDF

Design and Fabrication of Base Station Antenna for ETCS based on DSRC (DSRC 기반의 ETCS 기지국 안테나 설계 및 제작)

  • Ko Jin-Hyun;Kim Nam-Ki;Ha Jae-Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.75-83
    • /
    • 2004
  • This paper describes the design, fabrication, and measurement of a low side lobe antenna for RSE base station of the ETCS which is one of the ITS services. The antenna is installed on the gantry of road side and provides the wireless communication lint between vehicles and RSE. The required characteristics of ETCS base station antenna are low sidelobe and specific beam pattern by the road and install environment and installed place of OBU. To minimize the affects of multipath signal by reflection, Circular polarization is required. To get low sidelobe of antenna, array configuration and weighting factor by Taylor distribution in radiator elements are applied. The measured results of fabricated antenna are as follows; return loss of 130MHz by -10dB, an axial ratio of 2.6dB, and a gain of 17dBi. It is found that the measured beam patterns are similar to design results.

  • PDF

A Study on Traffic Information Service and Collection by the Use of DSRC Technology (DSRC통신 기반 교통정보 제공 및 수집에 관한 연구)

  • Yang, Won-Mo;Bang, Jeong-Hyeon;Kim, Gyu-Ok
    • Proceedings of the KOR-KST Conference
    • /
    • 2007.05a
    • /
    • pp.399-408
    • /
    • 2007
  • Dedicated Short Range Communications(DSRC) is a block of spectrum in the 5.8GHz band. DSRC is the useful technology of ITS Service. Japan operates ETCS, VICS by DSRC technology and DSRC technology is used ETCS Standard in Korea. There are many kind of utilization of DSRC in ITS. This is a study for traffic information service and collection with DSRC. Traffic management server service traffic information to driving vehicle by RSE(Road Side Equipment). OBU(Onboard Unit) in vehicle send the information to PDA(Personal Digital Assistant). Client S/W show the information to driver by text, pictogram, sound and return PDA H/W ID to OBU. Server make section traffic information by the PDA H/W ID information.

  • PDF

Embedded ARM based SoC Implementation for 5.8GHz DSRC Communication Modem (임베디드 ARM 기반의 5.8GHz DSRC 통신모뎀에 대한 SOC 구현)

  • Kwak, Jae-Min;Shin, Dae-Kyo;Lim, Ki-Taek;Choi, Jong-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.185-191
    • /
    • 2006
  • DSRC((Dedicated Short Range Communication) is dedicated short range communication for wireless communications between RSE(Road Side Equipment) and OBE(On-Board Unit) within vehicle moving high speed. In this paper, we implemented 5.8GHz DSRC modem according to Korea TTA(Telecommunication Technology Association) standard and investigated implementation results and design process for SoC(System on a Chip) embedding ARM CPU which control overall signal and process arithmetic work. The SoC is implemented by 0.11um design technology and 480pins EPBGA package. In the implemented SoC ($Jaguar^{TM}$), 5.8GHz DSRC PHY(Physical Layer) modem and MAC are designed and included. For CPU core ARM926EJ-S is embedded, and LCD controller, smart card controller, ethernet MAC, and memory controller are designed as main function.