• Title/Summary/Keyword: RPS4Y gene

Search Result 14, Processing Time 0.018 seconds

Variation of Transcribed X-linked Genes in Bovine Embryos Cloned with Fibroblasts at Different Age and Cell Cycle

  • Jeon, Byeong-Gyun;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.175-183
    • /
    • 2011
  • The present study compared the developmental potential, telomerase activity and transcript levels of X-linked genes (ANT3, HPRT, MeCP2, RPS4X, XIAP, XIST and ZFX) in the bovine somatic cell nuclear transfer (SCNT) embryos derived from different age and cell cycle of female donor nucleus. In experiment 1, the fusion rate, cleavage rate to 2-cell stage, developmental rate to blastocyst stage, and the mean number of total and ICM cells was slightly increased in embryos cloned with fetal fibroblasts compared to those with adult fibroblasts, but there was no significantly (p<0.05) differences. Telomerase activity was also similar in blastocysts cloned with fetal and adult fibroblasts. Up-regulated RPS4X and down-regulated MeCP2, XIAP, and XIST transcript level were observed in blastocysts cloned with adult fibroblasts, compared to those with fetal fibroblasts. In experiment 2, the fusion rate, cleavage rate to 2-cell stage, developmental rate to blastocyst stage, and the mean number of total and ICM cells was significantly (p<0.05) increased in embryos cloned with fetal fibroblasts at early G1 phase of the cell cycle, compared to those of fetal fibroblasts at late G1 phase. DNMT1 transcript was observed to significantly (p<0.05) increased in the fetal fibroblasts at 3 hrs after trypsin treatment of confluent culture. Further, level of telomerase activity and transcribed X-linked genes was also significantly (p<0.05) higher in the early G1 SCNT blastocysts than those of late G1. The results imply that fetal fibroblasts at early G1 phase induces the enhanced developmental potential and up-regulated telomerase activity and X-linked gene, but aberrant transcript pattern of X-linked genes may be displayed in the SCNT embryos.

Chromium acetate stimulates adipogenesis through regulation of gene expression and phosphorylation of adenosine monophosphate-activated protein kinase in bovine intramuscular or subcutaneous adipocytes

  • Kim, Jongkyoo;Chung, Kiyong;Johnson, Bradley J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.651-661
    • /
    • 2020
  • Objective: We hypothesized that Cr source can alter adipogenic-related transcriptional regulations and cell signaling. Therefore, the objective of the study was to evaluate the biological effects of chromium acetate (CrAc) on bovine intramuscular (IM) and subcutaneous (SC) adipose cells. Methods: Bovine preadipocytes isolated from two different adipose tissue depots; IM and SC were used to evaluate the effect of CrAc treatment during differentiation on adipogenic gene expression. Adipocytes were incubated with various doses of CrAc: 0 (differentiation media only, control), 0.1, 1, and 10 μM. Cells were harvested and then analyzed by real-time quantitative polymerase chain reaction in order to measure the quantity of adenosine monophosphate-activated protein kinase-α (AMPK-α), CCAAT enhancer binding protein-β (C/EBPβ), G protein-coupled receptor 41 (GPR41), GPR43, peroxisome proliferator-activated receptor-γ (PPARγ), and stearoyl CoA desaturase (SCD) mRNA relative to ribosomal protein subunit 9 (RPS9). The ratio of phosphorylated-AMPK (pAMPK) to AMPK was determined using a western blot technique in order to determine changing concentration. Results: The high dose (10 μM) of CrAc increased C/EBPβ, in both IM (p = 0.02) and SC (p = 0.02). Expression of PPARγ was upregulated by 10 μM of CrAc in IM but not in SC. Expression of SCD was also increased in both IM and SC with 10 μM of CrAc treatment. Addition of CrAc did not alter gene expression of glucose transporter 4, GPR41, or GPR43 in both IM and SC adipocytes. Addition of CrAc, resulted in a decreased pAMPKα to AMPKα ration (p<0.01) in IM. Conclusion: These data may indicate that Cr source may influence lipid filling in IM adipocytes via inhibitory action of AMPK phosphorylation and upregulating expression of adipogenic genes.

Molecular Analysis of the Y Chromosome in a 46,XY Female Phenotype

  • Kim, Jin-Woo;Kim, Tae-Jin;Park, So-Yeon;Nam, Sung-A;Jun, Jong-Young
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 1999
  • This is a case report of 46,XY female phenotype (46,XY karyotype, no pubic hair, blind vagina and absence of uterus)in an 18-year-old patient. To confirm whether a Y chromosome has a structural abnormality, fluorescent in situ hybridization (FISH) with the chromosome X/Y cocktail probe was simultaneously performed, and the six loci [PABY, RPS4Y(sy16, sy17), ZFY, DYS14] on the short arm, one locus (DYZ3) on the centromere and one locus (DYZ1) on the long arm were amplified by polymerase chain reaction (PCR). The probes used FISH hybridized to centromere of the X chromosome and heterochromatin region (Yq12) of the Y chromosome, and all PCR related Y chromosome showed positive band like normal male. From the results obtained, it seemed that the Y chromosome from the 46,XY female was structurely normal. Especially, the SRY gene has been equated with the mammalian testis-determining factor, and absence or point mutation in the SRY gene causes XY female. To detect the point mutations of SRY sequences, single-strand conformation polymorphism (SSCP) assay was used. Our results confirm that this patient has no mutation in the SRY gene on the Y chromosome.

  • PDF

Korean Red Ginseng Up-regulates C21-Steroid Hormone Metabolism via Cyp11a1 Gene in Senescent Rat Testes

  • Kim, In-Hye;Kim, Si-Kwan;Kim, Eun-Hye;Kim, Sung-Won;Sohn, Sang-Hyun;Lee, Soo-Cheol;Choi, Sang-Dun;Pyo, Suhk-Neung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.272-282
    • /
    • 2011
  • Ginseng (Panax ginseng Meyer) has been shown to have anti-aging effects in animal and clinical studies. However, the molecular mechanisms by which ginseng exerts these effects remain unknown. Here, the anti-aging effect of Korean red ginseng (KRG) in rat testes was examined by system biology analysis. KRG water extract prepared in feed pellets was administered orally into 12 month old rats for 4 months, and gene expression in testes was determined by microarray analysis. Microarray analysis identified 33 genes that significantly changed. Compared to the 2 month old young rats, 13 genes (Rps9, Cyp11a1, RT1-A2, LOC365778, Sv2b, RGD1565959, RGD1304748, etc.) were up-regulated and 20 genes (RT1-Db1, Cldn5, Svs5, Degs1, Vdac3, Hbb, LOC684355, Svs5, Tmem97, Orai1, Insl3, LOC497959, etc.) were down-regulated by KRG in the older rats. Ingenuity Pathway Analysis of untreated aged rats versus aged rats treated with KRG showed that the affected most was Cyp11a1, responsible for C21-steroid hormone metabolism, and the top molecular and cellular functions are organ morphology and reproductive system development and function. When genes in young rat were compared with those in the aged rat, sperm capacitation related genes were down-regulated in the old rat. However, when genes in the old rat were compared with those in the old rat treated with KRG, KRG treatment up-regulated C21-steroid hormone metabolism. Taken together, Cyp11a1 expression is decreased in the aged rat, however, it is up-regulated by KRG suggesting that KRG seems enhance testes function via Cyp11a1.