• Title/Summary/Keyword: RPN(Risk Priority Number)

Search Result 36, Processing Time 0.021 seconds

Study of Failure Mode and Effect Analysis in Brachytherapy (근접방사선치료에 관한 사고유형과 영향분석 연구)

  • Lee, Soon Sung;Park, Dong Wook;Shin, Dong Oh;Kim, Dong Wook;Kim, Kum Bae;Oh, Yoon-Jin;Kim, Juhye;Kwon, Na Hye;Kim, Kyeong Min;Choi, Sang Hyoun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.627-635
    • /
    • 2017
  • Brachytherapy is generally performed in conjunction with external radiation therapy, and the treatment course is very complicated, which can lead to radiation accidents. In order to solve this problem, we designed the process map by applying the failure mode and effects analysis (FMEA) method to the Brachytherapy and scored the risk priority number (RPN) for each treatment course based on this process map. The process map consisted of five steps, Patient consulting", "Brachytherapy simulation", "CT simulation", "Brachytherapy treatment planning" and "Treatment". In order to calculate the RPN, doctor, medical physicist, dose planners, therapist, and nurse participated in the study and evaluated occurrence, severity, and lack of detectability at each detail step. Overall, the process map is preceded by a patient identification procedure at each treatment stage, which can be mistaken for another patient, and a different treatment plan may be established to cause a radiation accident. As a result of evaluating the RPN for the detailed steps based on the process map, overall "Patient consulting" and "Brachytherapy treatment planning" step were evaluated as high risk. The nurses showed a tendency to be different from each other, and the nurses had a risk of 55 points or more for all the procedures except "Treatment", and the "Brachytherapy simulation" step was the highest with 88.8 points. Since the treatment stage differs somewhat for each medical institution performing radiotherapy, it is thought that the risk management should be performed intensively by preparing the process map for each institution and calculating the risk RPN.

A Quantitative Risk Analysis of Related to Tower Crane Using the FMEA (타워크레인의 정량적 위험성 평가가법에 관한 연구(FMEA 기법 위주))

  • Shim, Kyu-Hyung;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.34-39
    • /
    • 2010
  • The purpose of this study is to suggest objective evaluation model as a plan to utilize as opportunity in establishing judgment standard of mutual inspection criteria and to upgrade inspection ability by reviewing and analyzing level of danger and importance in advance based on inspection results of inspection institutions regarding tower cranes used in construction fields. Tower crane is a mechanical device transporting construction supplies and heavy materials to places over 20~150M high from the ground for the period ranging from a short time of 2~3 months to two years after being installed in construction sites in vicinity of buildings or structures and is an important facility indispensable for construction sites. However, since use period after installation is short and professional technical ability of technicians working on-site about of tower crane is poor, systematic and quantitative safety management is not carried out As a part of researches on procedure of RBI(Risk Based Inspection) possible to apply to Knowledge Based System based on knowledge and experiences of experts as well as to tower cranes for solving these problems, quantitative RPN(Risk Priority Number) was applied to RPN utilizing technique of FMEA(Failure Mode and Effect Analyses). When general RBI 80/20 Rule was applied parts with high level of risks were found out as wire rope, hoist up/down safety device, reduction gear, and etc. However, since there are still many insufficient parts as risk analyses of tower crane were not established, it is necessary for experts with sufficient experiences and knowledge to supplement active RBI techniques and continuous researches on tower cranes by sharing and setting up data base of important information with this study as a starting point.

Robust Design for Parts of Induction Bolt Heating System (유도가열시스템의 구성부품에 대한 강건설계)

  • Kim, Doo Hyun;Kim, Sung Chul;Lee, Jong Ho;Kang, Moon Soo;Jeong, Cheon Kee
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

Thermal Characteristic and Failure Modes and Effects Analysis for Components of Photovoltaic PCS (태양광 발전 PCS 구성부품에 대한 열적특성 및 고장모드영향분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Yoon-Bok
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • This paper is analyzed for the thermal characteristics(1 year) of the 6 components(DC breaker, DC filter(including capacitor and discharge resistance), IGBT(Insulated gate bipolar mode transistor), AC filter, AC breaker, etc.) of a photovoltaic power generation-based PCS(Power conditioning system) below 20 kW. Among the modules, the discharge resistance included in the DC filter indicated the highest heat at $125^{\circ}C$, and such heat resulting from the discharge resistance had an influence on the IGBT installed on the rear side the board. Therefore, risk priority through risk priority number(RPN) of FMEA(Failure modes and effects analysis) sheet is conducted for classification into top 10 %. According to thermal characteristics and FMEA, it is necessary to pay attention to not only the in-house defects found in the IGBT, but also the conductive heat caused by the discharge resistance. Since it is possible that animal, dust and others can be accumulated within the PCS, it is possible that the heat resulting from the discharge resistance may cause fire. Accordingly, there are two options that can be used: installing a heat sink while designing the discharge resistance, and designing the discharge resistance in a structure capable of avoiding heat conduction through setting a separation distance between discharge resistance and IGBT. This data can be used as the data for conducting a comparative analysis of abnormal signals in the process of developing a safety device for solar electricity-based photovoltaic power generation systems, as the data for examining the fire accidents caused by each module, and as the field data for setting component management priorities.

FMEA for rotorcraft landing system using Dempster-Shafer evidence theory (Dempster-Shafer 증거 이론을 이용한 회전익 항공기 착륙장치의 FMEA)

  • Na, Seong-Hyeon;So, Hee-Soup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.76-84
    • /
    • 2021
  • The quality assurance activities can detect the factors that affect the quality based on risk identification in the course of mass production. Risk identification is conducted with risk analysis, and the risk analysis method for the rotorcraft landing system is selected by failure mode effects analysis (FMEA). FMEA is a method that detects the factors that can affect the product quality by combining severity, occurrence, and detectability. The results of FMEA were prioritized using the risk priority number. On the other hand, these methods have certain shortcomings because the severity, occurrence, detectability are weighted equally. Dempster-Shafer evidence theory can conduct uncertainty analysis for the opinions with personal reflections and subjectivity. Based on the theory, the belief function and the plausibility function can be formed. Moreover, the functions can be utilized to evaluate the belief rate and credibility. The system is exposed to impact during take-off and landing. Therefore, experts should manage failure modes in the course of mass production. In this paper, FMEA based on the Dempster-Shafer evidence theory is discussed to perform risk analysis regarding the failure mode of the rotorcraft landing system. The failure priority was evaluated depending on the factor values. The results were derived using belief and plausibility function graphs.

A Study on the Priority Analysis of Work Delay Factors in Steal-frame Work using FMEA (FMEA를 활용한 철골공사 작업지연요인의 중요도에 관한 연구)

  • Lee, Hyun-Chul;Lee, Jae-Hong;Go, Seong-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.91-101
    • /
    • 2009
  • The factors of uncertainty such as work delay could cause many problems, for example, increase of construction cost and terms of work, and the deterioration of quality. Because of these, the uncertainty risk is regarded as an important management factor to obtain the success of construction project. So, the systematic management plan about the uncertainty factors is needed because it plays an important role in the completion of entire project. And also analysis of some factors which can cause the work delay can be one way of improving construction project's certainty and making it competitive. In this reason, we have to make an effort to set a priority based on analysis of quantitatively numerical value about work delay factors to manage them effectively. Thus, this study aims to suggest the basic data for the effective management and prevention of work delay in steel-frame work which is progressive actively now, along with increasing of demand of high-rise buildings by analyzing each reasons of work delay factors and also by suggesting important management factors that are coded according to each construction work using FMEA method which could give a data about the importance of work delay factors through quantitatively numerical value.