• Title/Summary/Keyword: RPC Detector

Search Result 3, Processing Time 0.017 seconds

A Design and Implementation of ROAD(RPC Object vulnerability Automatic Detector) (ROAD(RPC Object vulnerability Automatic Detector) 도구의 설계 및 구현)

  • Yang, Jin-Seok;Kim, Tae-Ghyoon;Kim, Hyoung-Chun;Hong, Soon-Jwa
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • Software testing is the process of analyzing a software item to detect the differences between existing and required conditions and to evaluate the features of the software item. A traditional testing focuses on proper functionality, not security testing. Fuzzing is a one of many software testing techniques and security testing. Fuzzing methodology has advantage that low-cost, efficiency and so on. But fuzzing has defects such as intervening experts. Also, if there is no specification, fuzzing is impossible. ROAD Tool is automated testing tool for RPC(Remote Procedure Call) based protocol and software without specification. Existing tools are semi-automated. Therefore we must modify these tools. In this paper, we design and implement ROAD tool. Also we verify utility in testing results.

DEVELOPMENT AND EVALUATION OF THE MUON TRIGGER DETECTOR USING A RESISTIVE PLATE CHAMBER

  • Park, Byeong-Hyeon;Kim, Yong-Kyun;Kang, Jeong-Soo;Kim, Young-Jin;Choi, Ihn-Jea;Kim, Chong;Hong, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.35-43
    • /
    • 2011
  • The PHENIX Experiment is the largest of the four experiments that have taken data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. Among many particles, muons coming from W-boson decay gives us key information to analyze the spin of proton. Resistive plate chambers are proposed as a suitable solution as a muon trigger because of their fast response and good time resolution, flexibility in signal readout, robustness and the relatively low cost of production. The RPC detectors for upgrade were assembled and their performances were evaluated. The procedure to make the detectors better was optimized and described in detail in this thesis. The code based on ROOT was written and by using this the performance of the detectors made was evaluated, and all of the modules for north muon arm met the criteria and installation at PHENIX completed in November 2009. As RPC detectors that we made showed fast response, capacity of covering wide area with a resonable price and good spatial resolution, this will give the opportunity for applications, such as diagnosis and customs inspection system.

Study of eco-friendly gas mixtures for SHiP RPCs

  • M. Kang;Y. Jo;K. S. Lee;S. H. Kim;J.-W. Ko;K. Y. Lee;B. D. Park;J. Y. Sohn;C. S. Yoon;Y. G. Kim;K.-Y. Choi;J.-K. Woo
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.1-12
    • /
    • 2022
  • Over the past few decades, tetrafluoroethane (TFE, R134a Freon)-based gases have been widely used in the operation of phenolic resistive plate chambers (RPCs) in many high-energy experiments. However, TFE has a high global warming potential (GWP); therefore, a search for new eco-friendly gases to replace traditional TFE-based ones is now unavoidable. In this research, we present cosmic-ray test results of a prototype RPC for the SHiP (search for hidden particles) experiment using 1.6- and 1.4-mm-thick RPC electrodes containing mixtures of various gases, including 1,3,3,3-tetrafluoropropene (HFO1234ze), CO2, iC4H10 and SF6. We compare the performance data gathered with these new gas mixtures with those gathered with a traditional TFE-based gas used for RPCs in compact muon solenoid (CMS) and a toroidal LHC apparatus (ATLAS) experiments. The addition of CO2 to the HFO1234ze-based gas was found to be fairly effective in reducing the working-point high voltage (HVWP) for RPC operation. The results of our experiments lead us to the conclusion that adding 40% CO2 or less, when combined with HFO1234ze-based gas, is conducive to reliable detector performance for SHiP single-gap phenolic RPCs.