• Title/Summary/Keyword: RP-1/LOx

Search Result 13, Processing Time 0.025 seconds

LOX/RP-1 대추력 액체로켓 엔진에서의 고주파 연소불안정 예측

  • 조용호;이길용;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • 액체추진 로켓엔진의 개발과정에서 고주파 연소불안정은 엔진의 비행 안정성 및 성능의 보장을 위해 반드시 고려해야 하는 중요한 인자이다. 특히 액체추진 로켓엔진에 사용되는 다양한 추진제 조합 중 LOX/RP-1은 그 성능, 가용성, 경제성 등의 측면에서 우수한 추진제이지만 F-1 엔진의 개발과정에서와 같이 여타 추진제 조합에 비해 고주파 연소불안정 특성이 강하게 나타난다. 액체추진 로켓엔진의 음향불안정 특성 예측을 위해 다양한 방법이 제시되어 왔다. 그 중 n-$\tau$ 2 매개변수 법은 연소불안정 특성 예측에 실험적 고찰을 통한 간단한 연소모델을 포함하는 것으로 신속한 결과를 얻을 수 있다는 장점 때문에 엔진의 예비설계 및 본 설계과정에서 인정성 측면의 분석을 위해 널리 사용되고 있고 기존의 엔진 개발과정을 통해 그 신뢰성이 검증되어 왔다.

  • PDF

2-Parameter High Frequency Combustion Instability Model (2-파라메타 모델에 의한 고주파 연소불안정 해석)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.74-83
    • /
    • 1997
  • The definition of burning admittance and conventional n-$\tau$ stability rating technique are combined to investigate the high frequency combustion instabilities inside the cylindrical combustion chamber. Perturbed flow variables are written as the sum of fluctuating and time-averaged mean quantities on the assumption that the terms of the order higher than unity are sufficiently small, hence linearized governing equations could be formulated. Chamber admittances up and downstream of the flame front calculated with appropriate boundary conditions result in the burning admittance and corresponding n-$\tau$ neutral stability curve. Configurational and operational design factors are tested to detect the unstable wave-induced LOX-RP1 combustion instabilities. Operational design factors, e.g. pressure or O/F ratio, appear less influential to drive high frequency instability while the location of the flame front and configurational factors enhance or deteriorate the stabilities strongly. Conclusively, LOX-RP1 combustion inside the cylindrical combustion chamber is apt to be unstable against long residence time and shortened chamber length.

  • PDF

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF

Inhibition of Red Ginseng on 5-Hydroxyeicosatetraenoic Acid (5-HETE) Biosynthesis from Arachidonic Acid in Helicobacter Pylori-infected Gastric Cells

  • Park Soo-Jin
    • Nutritional Sciences
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2006
  • Helicobacter pylori (H. pylori) infection rapidly stimulated either COX-2 or 5-LOX and released arachidonic acid metabolites that have been considered as pivotal mediators in H. pylori-induced inflammatory responses. To determine whether red ginseng extract (RGE) can suppress the biosynthesis of 5(S)-hydroxyeicosatetraenoic acids (HETE), a precursor metabolite of leukotrienes B4 (LTB4) in H. pylori-provoked inflammatory responses in gastric epithelial cells, the biosynthesis of monohydroxy fatty acids was measured using radioactive arachidonic acid and validated by RP-HPLC using non-radioactive AA as substrate in AGS cells cocultured with H. pylori (ATCC 43504) with or without pretreatment of RGE. Among three known major HETEs, H. pylori infection specifically induced the biosynthesis of $^{14}C-5(S)-HETE$ rather than the complex of $^{14}C-15S-/^{14}C-12(S)-HETE$ from $^{14}C-AA$, concomitantly obtained by HPLC(p<0.01). RGE, 1 to $100{\mu}g/ml$, selectively suppressed H. pylori-stimulated $^{14}C-5(S)-HETE$ production implying the attenuation of 5-lipoxygenase activity, of which was similar to known LOX inhibitor NDGA $(10{\mu}M)$ (p<0.01). However, the amount of 5(S)-HETE was significantly reduced by higher dose of RGE $(100{\mu}g/ml)$ (p<0.05). These results indicated that LOX pathway might be one of principle pathogenic mechanisms of H. pylori and red ginseng could be a nutraceutical against H. pylori infection through inhibiting action of LOX activity.

Analysis of Transient Characteristics for Turbopump-fed Liquid Propellant Rocekt Engine in Start-up (터보펌프식 액체 로켓 엔진의 시동 과도 특성 해석)

  • Son, Min;Kim, Duk-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.34-37
    • /
    • 2010
  • One dimensional transient analysis was studied for turbopump-fed liquid propellant rocket engine(LRE) system in starting using AMESim. The effects of timing of gas generator fuel valve opening and gas generator ignition to start-up stability were researched for open cycle type system using LOX/RP-1 to propellants. Result show that the parameters and sequence on start-up should be considered to design optimized turbopump-fed LRE system.

  • PDF

System Analysis of the Liquid Rocket Engine with Staged Combustion Cycle (단계식 연소 사이클 액체로켓엔진의 시스템 해석)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Yoo, Seung-Young;Oh, Seok-Hwan;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.46-51
    • /
    • 2012
  • This study aims to develop the performance analysis program on the staged combustion cycle of the liquid rocket engine using liquid oxygen(LOx) as oxidizer, liquid hydrogen(LH2) and RP-1 as fuel. The developed analysis program can obtain the propellant mass flow rate, the specific impulse, and representative design values of engine components for the required thrust satisfying pressure, mass flow, and energy balance conditions. The analysis results show that the the specific impulses (Isp) compared to those of the real engines have been less than 1%. With additional constraints, the program will be improved for the system optimization.

  • PDF

Comparative Study on the Performance of Small Satellites Launch Vehicle Employing ElecPump Cycle Upper Stage Engine (전기펌프 사이클 상단 엔진을 적용한 소형발사체 성능 비교연구)

  • Yu, Byungil;Kwak, Hyun-Duck;Kim, Hongjip
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.107-121
    • /
    • 2020
  • The performance analysis of the small satellites launch vehicle using the electric pump cycle as the upper stage engines was performed. The first stage is the launch vehicle that uses the test launch vehicle of the Korea Space Launch Vehicle II and the second stage employs elecpump cycle engine that uses liquid methane and kerosene (RP-1) as fuel. A model for the mass estimation was presented and the analysis was conducted for the range of thrust of 20 to 40 kN and combustion pressure of 3 to 6 MPa with a nozzle expansion ratio of 60 to 100. The mixture ratio with the maximum velocity increment was calculated and the performance of the LEO and SSO payload were calculated from the stage mass estimation. In both the cases, liquid methane, and RP-1 showed maximum payload for 20 kN thrust, 3 MPa combustion pressure, and the nozzle expansion ratio of 100, with a mixture ratio of 3.49 for liquid methane and 2.75 for RP-1. In addition, the ditching points of the first stage and the fairing in the LEO mission were analyzed using ASTOS.

Effect of Combustion Chamber Pressure to Specific Impulse of Liquid Rocket Engine (액체로켓엔진에서 연소압이 비추력에 미치는 영향)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3154-3158
    • /
    • 2008
  • A liquid rocket engine performance has been analyzed as a function of combustion pressure with LOx/RP-1R. The present method is verified by comparing the specific impulse for various combustion pressure with given pump head model. The optimal combustion pressure is between 150 bar and 200 bar for given efficiencies. Both the optimal combustion pressure and the specific impulse increase for increased turbine efficiency. The optimal combustion pressure decreases and the specific impulse increases for increased combustion efficiency. The pump efficiency and the turbine inlet temperature have the same qualitative effect as the turbine efficiency.

  • PDF

A Breakup Mechanism of Liquid Impinging Jet (I) (충돌분무에 의한 분열현상 (I))

  • 이충원;석명수;석지권
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.16-16
    • /
    • 1998
  • 로켓의 추진제에는 고체 추진제와 액체 추진제를 사용하는 두 경우로 나눌 수 있는데, 액체 추진제를 사용하는 경우, 액체 연료와 액체 산화제를 다양한 방법으로 연소실내로 분사하게 된다. 이때 사용되는 injector들 중에 impingement type이 있다. 이 type은 injector의 가공이 비교적 용이하고, 혼합성능이 좋기 때문에 LOX/RP-1(Kerosin-based hydrocarbon fuel)을 사용하는 액체 로켓엔진에서 주로 사용되어 왔다. 두 액체 jet의 충돌에 의해 액막이 형성되는데, 이 액막은 가장자리로 갈수록 두께가 얇아지며 액막표면의 파는 충돌점으로부터 멀어질수록 그 진폭의 증가를 이루어 액체의 표면장력과 관성력의 균형을 깨트리며, 이 순간 액막은 rim의 형태로 분열하여 결국에는 액적을 생성하게 된다. 현재까지의 연구내용은 충돌 jet의 형태 laminar jet과 turbulent jet으로 구분된 인젝트에 관해 연구되어왔고, 특히 국내에는 이러한 구분된 충돌 jet의 분열현상에 관한 연구결과가 미흡하다. 동일한 오르피스의 경우에도 laminar jet과 turbulent jet으로 구분되어 지며, 각각의 jet의 형태에 따라 생성되는 액막의 형상 또는 다르게 생성되어 진다. 그러므로 본 연구에서는 두 구분된 jet의 경우의 분열현상을 실험적으로 분석하였다.

  • PDF