• Title/Summary/Keyword: ROTATIONAL FORCE

Search Result 456, Processing Time 0.032 seconds

Performance Test of the 30-ton Class Liquid Rocket Engine Turbopump Turbine (30톤급 액체로켓 엔진용 터보펌프 터빈 성능시험)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Performance test of the 30-ton class liquid rocket engine turbopump turbine has been conducted using high pressure cold air. Overall performance of the two kinds of turbine rotors - rotor with knife-edged L.E blades and with rounded L.E blades - has been measured for various rotational speed and turbine pressure ratio. The effect of rotational speed and turbine pressure ratio on the turbine axial force behavior also has been measured in parallel. Test results have revealed that the efficiency of knife edged L.E. turbine is a little bit higher than that of rounded L.E. turbine. The axial force of the turbine varied linearly with respect to rotational speed and its magnitude largely depended on turbine pressure ratio.

A preliminary study on the surface finishing of a hard disk slider using magnetorheological (MR) fluid (자기유변유체를 이용한 하드디스크 슬라이더의 표면연마를 위한 기초연구)

  • Jung, B.S.;Jang, K..I.;Min, B..K.;Lee, S.J.;Seok, J.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • Surface finishing using magnetorheological (MR) fluid is useful to finish small but not too small workpieces such as those in a few millimeter scale. However, due to the high surface hardness, this finishing process does not seem to be suit for applying to a hard disk slider. In this work, a preliminary study is performed on the finishing of the hard disk slider surface with a mixture of an MR fluid and diamond powder. During a wheel type MR finishing process, centrifugal force is found to be a major factor to cause a reduction in material remove rate (MRR), which is supported by a theoretical model. To facilitate this founding, the rotational speed of tool is confined to 500rpm while a rectilinear alternating motion with the mean speed, which is equivalent to the rotational speed, is additionally applied to the workpieces. As a consequence, MRR of about 2 times of the sole rotational case is obtained. This paper shows that MR finishing process can be used to polish a hard material in millimeter scale efficiently by controlling the speeds of the tool and the workpiece.

  • PDF

Manufacturing System of Centrifugal Cast Metal Bearing by Dehydrogenation (탈수소 열처리 공정에 의한 원심주조 메탈베어링의 제조 시스템)

  • Kim, Jeung-Hun;Kim, Chung-Gu;Byen, Jea-Young;Lee, Eun-Suk;Yang, Ji-Yung;Choi, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.111-117
    • /
    • 2020
  • Centrifugal casting is suitable for producing hollow-products using centrifugal force. Bush type metal bearings are the key parts that facilitate the rotational movement of various machinery. Metal bearings produced by conventional centrifugal casting machines show rotational imbalance. Therefore, after injecting a large amount of material, the product's precision is secured in the secondary processing. Rotational imbalance is caused by the force acting on the rotary disc plate. In order to minimize rotational imbalance, NASTRAN was used for the optimal design and structural analysis. It was concluded that the rotating plate of the conventional centrifugal casting machine should be prevented from tilting. For this purpose, the location & thickness of the stiffeners were obtained through the optimum design. In the conventional centrifugal casting machine, both ends of the product are lower in temperature than the center part, so internal stress occurs. This solves this problem by inserting a heating coil into the rotating plate.

4-pole Lorentz Force Type Self-bearing Motor with a New Winding Configuration (새로운 권선법을 이용한 4극 로렌쯔형 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • This paper introduces a four-Pole Lorentz force type self-bearing motor in which a new winding configuration is proposed to enable the sing1e winding to function both as a synchronous PM motor and as a magnetic bearing. The Lorentz force type has some good points such as the linearity of control force, freedom from flux saturation, and high efficiency, unlike conventional self-bearing motors using a reluctance force. And also, compared with the previously proposed eight-pole type, this four-pole self-bearing motor is more profitable for high rotational speed. In this paper, mathematical expressions of torque and radial force in the proposed self-bearing motor are derived to show that they can be separately controlled regardless of rotational speed and time. For verification of the theory, a prototype is made, where a ring-shape outer rotor is actively controlled in two radial directions while the other motions are passively stable supposing the radial stability. Through some experiments. it is shown that the proposed scheme can provide high capability and feasibility for a small high-speed self-bearing motor.

A Study on Grip Force and Angular Kinematics during Golf Putting Stroke (그립악력과 각운동학을 이용한 골프 퍼팅 분석)

  • Choi, Jin-Seung;Kim, Hyung-Sik;Lim, Young-Tae;Yi, Jeong-Han;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • The purpose of this study was to evaluate the difference in grip force and angular kinematic variables between elite (handicap${\leq}2$) and novice golfers. Three-dimensional motion analysis system with synchronized grip force measurement system was used. The participants consisted of two groups based on their playing ability: 10 elite golfers and 10 novice golfers. Each subject performed 5 putting strokes at the distance of 1, 3, and 5m with randomly selected order. During entire putting phase, elite group showed relatively constant grip force but novice group showed continuously increasing grip force pattern. There existed a clear difference in the trajectory of shoulder line between two groups. As for novice group the rotational center did not converge into one point, for elite group the rotational center converged into precise single point. And there was a clear difference pattern in anterior-posterior directional movement at shoulder between two groups. These difference might be helpful for improving consistent putting skills.

Design of a Novel Polishing Tool Mechanism with 3-axis Compliance

  • Gi-Seong Kim;Han Sung Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.993-999
    • /
    • 2023
  • In this paper, a novel polishing tool mechanism with 3-axis compliance is presented, which consists of 2-axis rotational and 1-axis linear compliances in series. The 2-axis rotational compliance mechanism is made up of four cantilever beams for adjusting rotational stiffness and one flexure universal joint at the center for constraining the z-axis deflection. The 2-axis rotational compliance can mechanically adjust the polishing tool to machined surfaces. The polishing press force can be simply controlled by using a linear spring along the z-axis. The 2-axis rotational and 1-axis linear compliance design is decoupled. The stiffness analysis of the 2-axis compliance mechanism was performed based on link compliance matrix and rigid body transformation. A 3-axis polishing tool was designed by configuring the 2-axis compliance mechanism and one linear spring.

Performance Study of Magnetic Bearing Considering the Performance Limit (자기 베어링의 성능한계를 고려한 작동특성 연구)

  • 장인배;한동철
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.59-65
    • /
    • 1995
  • In this study, we investigated the operational limit of magnetic bearing-rotor system due to the maximum force limit and slew rjate limit of the electromagnetic actuator as a function of the time dependent control characteristics. The feedback gain of the controller varies the current of the electromagnet coil with the motion of the rotor. The distorsion of magnetic force due to the slew rate limit is not occurred jup to 30, 000 rpm in the magnetic bearing that we have a close relation with the rotational speed and vibration level of the rotor and the proportional gain of the controller. Therefore the maximum force limit determines the maximum allowable orbit radius of the magnetic bearing-rotor system. The maximum allowable vibration levels are exponentially decreased according to the increment of rotational speed and proportional gain of the controller.

  • PDF

On complex flutter and buckling analysis of a beam structure subjected to static follower force

  • Wang, Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.533-556
    • /
    • 2003
  • The flutter and buckling analysis of a beam structure subjected to a static follower force is completely studied in the paper. The beam is fixed in the transverse direction and constrained by a rotational spring at one end, and by a translational spring and a rotational spring at the other end. The co-existence of flutter and buckling in this beam due to the presence of the follower force is an interesting and important phenomenon. The results from this theoretical analysis will be useful for the stability design of structures in engineering applications, such as the potential of flutter control of aircrafts by smart materials. The transition-curve surface for differentiating the two distinct instability regions of the beam is first obtained with respect to the variations of the stiffness of the springs at the two ends. Second, the capacity of the follower force is derived for flutter and buckling of the beam as a function of the stiffness of the springs by observing the variation of the first two frequencies obtained from dynamic analysis of the beam. The research in the paper may be used as a benchmark for the flutter and buckling analysis of beams.

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

The Differences in the Ski Carving Turn Motion According to Level of Exper tise (스키 카빙턴 동작 시 기술 수준에 따른 동작의 차이 연구)

  • Eun, Seon-Deok;Hyun, Moo-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.319-325
    • /
    • 2010
  • The purpose of this research was to investigate the differences in the ski carving turn motion according to level of expertise. The posture and movement of 6 skiers nearby the fall-line was evaluated with a biomechanical approach focusing the rotational mechanics. The slope was at an angle of $9^{\circ}$ and the following variables were measured and calculated: tangential velocity, change of COM height after passing fall-line, width between feet, angle between upper body and thigh, trunk angle, average radius of curvature and average centripetal force. The expert skiers minimized their center of mass height movement and maintained the width of between their feet after the passing the fall-line in comparison with the beginners and intermediate skiers. The experts restrained themselves from pushing their upper body downward after the turn to maximize the centripetal force. The experts in comparison with the beginners and intermediate skiers during the turn didn't have to reduce their radius of curvature to maintain a high centripetal force. It was concluded, that the most important factor affecting the centripetal force, was for the beginners and intermediate skiers, to minimize their movement while using the appropriate amount of edging.