• Title/Summary/Keyword: ROTATIONAL FORCE

Search Result 456, Processing Time 0.024 seconds

Reduction of Chattering Error of Reed Switch Sensor for Remote Measurement of Water Flow Meter (리드 스위치 센서를 이용한 원격 검침용 상수도 계량기에서 채터링 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.42-47
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors in the automatic remote measurement of water meter a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact switch by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used mostly in measurement application to detect the rotational or translational displacement. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just mounted simply on the conventional mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor two steel leaf springs make mechanical contact and apart repeatedly as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But the digital data is occurred difference or won by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing vehicle near to the switch sensor installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using filter algorithm and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical characteristics.

The use of implant-assisted removable partial denture in the partially edentulous maxilla with a few unilateral remaining teeth and implant overdenture in the mandible: A case report (상악 편측 소수 잔존치에서 임플란트 융합 국소의치와 하악 임플란트 피개의치의 수복 증례)

  • Yun, Yina;Kim, Hyun-Ah;Park, Sangwon;Park, Chan;Jang, Woohyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • Successful cases of the implant-assisted removable partial denture and implant overdentures are reported in which a few implants are additionally placed to secure the maintenance, support, and stability of the denture when there are a few residual teeth. When the lateral force applied to the tooth abutment and implant surveyed crown is minimized, the horizontal and rotational movement of the denture is significantly reduced which is an effective method that can improve the address in patients who complain of reduced retention and stability of their dentures. In this case, a small number of implants were placed to fabricate an implant-assisted removable partial denture with implant surveyed crown in the maxilla and implant overdenture with Locator® attachment in the mandible to improve the retention, stability, and support of the dentures. The patient was satisfied with both functional and aesthetic aspects after the final dentures were delivered.

Variable Switching Duty Control of Switched Reluctance Motor using Low-Cost Analog Drive (저가형 아날로그 구동장치를 이용한 Switched Reluctance Motor의 스위칭 Duty 가변제어)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2021
  • For accurate speed and current control in industrial applications, SRM (Switched Reluctance Motor) is very important to synchronize the stator phase excitation and rotor position in the drive due to its nature. In general, position sensors such as encoder and resolver are used to generate rotational force by exciting the stator winding according to the rotor position and to control the motor by using speed and position information. However, for these sensors, 1) the cost of the sensors is quite large in terms of price, so the proportion of the motor system to the total system cost is high. 2) In terms of mechanical, position sensors such as encoders and resolvers are attached to the stator to increase the size and weight. In conclusion, in order to drive the SRM, control based on the rotor position information should be basically performed, and it is important to design the SRM driving system according to the environment in consideration of the application field. Therefore, in this paper, we intend to study the driving and control characteristics of SRM through variable switching duty control by designing a low-cost analog driving device, deviating from the general control system using the conventional encoder and resolver.

The Study on Operability Improvement of the start motor for Auxiliary Power Unit of Rotorcraft (회전익 항공기 보조동력장치 시동모터 운용성 개선연구)

  • Lee, Gwang-Eun;Kang, Byoung-Soo;Na, Seong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.774-780
    • /
    • 2021
  • The auxiliary power unit (APU) of a rotorcraft starts the engine during operation/flying. The APU is composed of a gas turbine engine type. The starting principle of the component is that the electric start motor generates the power required for starting by rotating the shaft. In this study, quality improvement was performed by applying an over-running clutch (ORC) between the APU and the starter motor to secure the operability of the starter motor of the APU mounted on the rotorcraft. The starter motor has the main role of starting the APU, but during operation, it is rotated without load by the rotational force of the APU gear shaft, resulting in friction at the brush. This phenomenon causes abrasion of the brush of the starter motor. Consequently, when the APU operation time increases, the brush life decreases, and the operability of the APU is affected. In this study, an ORC that separates the interlocking between the start motor brush abrasion and the APU operation time was applied to improve the operability/durability of the APU starter motor. The effect was verified through a test, and the technical feasibility of the design change was analyzed.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PHENOMENON PRODUCED DURING RETRACTION OF FOUR MAXILLARY INCISORS (상악 4절치의 후방견인시 나타나는 현상에 관한 유한요소법적 분석)

  • Cheon, Ok-Jin;Kim, Tae-Woo;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.525-541
    • /
    • 1995
  • This study was designed to investigate force systems and tooth movements produced by retraction archwire during retraction of four maxillary incisors after the maxillary canine retraction into the maxillary first premolar extraction space using the computer-aided three-dimensional finite element method. A three-dimensional finite element model, consisting of 2248 elements and 3194 nodes, was constructed. The model consisted of maxillary teeth and surrounding periodontal membranes, .022'$\times$.028'-slot brackets, and 5 types of retraction archwires(.019'$\times$.025' stainless steel archwire) modeled using the beam elements. The contact between the wire and the bracket slot was modeled using the gap elements because of the non-linear elastic behaviors of the contact between them. The forces and moments, End displacements produced by retraction archwire were measured at various conditions to investigate the difference according to types of loops, magnitudes of activation force, gable angle, and anterior lingual root torque. The results were expressed quantitative and visual ways in the three-dimensional method. The following conclusions can be drawn from this study.1. When the tear-drop loop archwire was activated, the mesio-distal and lingual translational movements of the teeth helped to close the extraction space, but unwanted movements of the teeth including intrusions and extrusions, and rotational movements in each direction occurred. 2. Activation of T-loop archwire compared with those of other types of retraction archwires produced the least translational movements of the teeth helped to space closure and also the least unwanted movements of the teeth. 3. Increasing amount of activation in the tear-drop archwire led not only to increase of translational movements of the teeth helped to space closure, but also to increase of unwanted movements of the teeth. 4. Addition of gable bend in the tear-drop archwire helped anterior teeth to translational movements in the mesio-distal direction, but increased unwanted movements of the teeth 5. Addition of anterior lingual root torque in the tear-drop archwire helped central and lateral incisor to improve their facio-lingual inclination, but increased unwanted movements of the teeth.

  • PDF

OPERATIONAL MODEL OF TIME-KEEPING SYSTEMS OF HEUMGYEONGGAK-NU (흠경각루 시보시스템의 작동모델)

  • KIM, SANG HYUK;YUN, YONG-HYUN;MIHN, BYEONG-HEE;LEEM, BYONG GUEN;YOON, MYUNG KYOON;LEEM, BYONG SI
    • Publications of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.31-40
    • /
    • 2019
  • We study the internal structure under the artificial mountain of Heumkyeonggak-nu, a Korean water-powered clock in the early Joseon dynasty. All the puppets on the artificial mountain are driven by the rotational force generated by the water wheel at their designated time. We design a model that work with three parts of the artificial mountain. At the upper part of the artificial mountain to the east, west, north and south, there are four puppets called the Four Mystical Animal Divinity and four ladies called the Jade Lady respectively. The former rotates a quarter every double hour and the latter rings the bell every hour. In the middle part of this mountain is the timekeeping platform with four puppets; the Timekeeping Official (Hour Jack), the Bell-, Drum-, and Gong-Warriors. The Hour Jack controls time with three warriors each hitting his own bell, drum, and gong, respectively. In the plain there are 12 Jade Lady puppets (the lower ladies) combined with 12 Oriental Animal Deity puppets. In his own time a lady doll pops out of the hole and her animal doll gets up. Two hours later, the animal deity lies down and his lady hides in the artificial plain. These puppets are regularly moved by the signal such as iron balls, bumps, levers, and so on. We can use balls and bumps to explain the concept of the Jujeon system. Iron balls were used to manipulate puppets of the timekeeping mechanism in Borugak-nu, another Korean water-powered clock in Joseon dynasty, which was developed earlier than Heumgyeonggak-nu. According to the North Korea's previous study (Choi, 1974), it is obvious that bumps were used in the internal structure of Heumgyeonggak-nu. In 1669, The armillary clock made by Song, I-young was also utilized bumps. Finally we presented mock-ups of three timekeeping systems.