• Title/Summary/Keyword: ROS scavenger

Search Result 125, Processing Time 0.027 seconds

Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study

  • Kai Dong;Wen-Juan Zhou;Zhong-Hao Liu
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.54-68
    • /
    • 2023
  • Purpose: The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. Methods: BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 µM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 µM, ROS scavenger) group, (4) the drBMSCs + MF (200 µM) group, and (5) the drBMSCs + MF (200 µM) + H2O2 (50 µM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. Results: MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. Conclusions: MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.

Auranofin accelerates spermidine-induced apoptosis via reactive oxygen species generation and suppression of PI3K/Akt signaling pathway in hepatocellular carcinoma

  • Hyun Hwangbo;Da Hye Kim;Min Yeong Kim;Seon Yeong Ji;EunJin Bang;Su Hyun Hong;Yung Hyun Choi;JaeHun Cheong
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Auranofin is a US Food and Drug Administration (FDA)-approved anti-arthritis medication that functions as a thioredoxin reductase inhibitor. Spermidine, a polyamine present in marine algae, can exert various physiological functions. Herein, we examined the synergistic anticancer activity of auranofin and spermidine in hepatocellular carcinoma (HCC). Combined treatment with auranofin and spermidine suppressed cell viability more efficiently than either treatment alone in HCC Hep3B cells. The isobologram plotted by calculating the half maximal inhibitory concentration (IC50) values of each drug indicated that the two drugs exhibited a synergistic effect. Based on the analysis of annexin V and cell cycle distribution, auranofin and spermidine markedly induced apoptosis in Hep3B cells. Moreover, auranofin and spermidine increased mitochondria-mediated apoptosis by promoting mitochondrial membrane potential (Δψm) loss. Auranofin and spermidine significantly increased reactive oxygen species (ROS) production in Hep3B cells, and the blocking ROS suppressed apoptosis induced by spermidine and auranofin. In addition, auranofin and spermidine reduced the expression of phosphorylated phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt), and PI3K inhibitor accelerated auranofin- and spermidine-induced apoptosis. Using ROS scavenger and PI3K inhibitor, we revealed that ROS acts upstream of auranofin- and spermidine-induced apoptosis. Collectively, our study suggests that combination treatment with auranofin and spermidine could afford synergistic anticancer activity via ROS overproduction and reduced PI3K/Akt signaling pathway.

Inhibition of melanogenesis by sodium 2-mercaptoethanesulfonate

  • Kim, Jeong-Hwan;Oh, Chang-Taek;Kwon, Tae-Rin;Kim, Jong Hwan;Bak, Dong-Ho;Kim, Hyuk;Park, Won-Seok;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.149-156
    • /
    • 2020
  • Sodium 2-mercaptoethanesulfonate (mesna) is a protective agent that is widely used in medicine because of its antioxidant effects. Recently, reactive oxygen species (ROS) were shown to increase pigmentation. Thus, ROS scavengers and inhibitors of ROS production may suppress melanogenesis. Forkhead box-O3a (FoxO3a) is an antimelanogenic factor that mediates ROS-induced skin pigmentation. In this study, we aimed to investigate the whitening effect of mesna and the signaling mechanism mediating this effect. Human melanoma (MNT-1) cells were used in this study. mRNA and protein expression were measured by real-time quantitative PCR and Western blotting analysis to track changes in FoxO3a-related signals induced by mesna. An immunofluorescence assay was performed to determine the nuclear translocation of FoxO3a. When MNT-1 melanoma cells were treated with mesna, melanin production and secretion decreased. These effects were accompanied by increases in FoxO3a activation and nuclear translocation, resulting in downregulation of four master genes of melanogenesis: MITF, TYR, TRP1, and TRP2. We found that mesna, an antioxidant and radical scavenger, suppresses melanin production and may therefore be a useful agent for the clinical treatment of hyperpigmentation disorders.

Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

  • Wang, Xu De;Su, Guang Yue;Zhao, Chen;Qu, Fan Zhi;Wang, Peng;Zhao, Yu Qing
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.133-143
    • /
    • 2018
  • Background: AD-2 (20(R)-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD) is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R)-3b-O-(L-alanyl)-dammarane-12b, 20, 25-triol), a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS) were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on $Wnt/{\beta}-catenin$ signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting $Wnt/{\beta}-catenin$ signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy.

Scavenging Activity of Reactive Oxygen Species and Inhibitory Effect of Cytochrome P450 from Circium japonicum Extract (대계 추출물의 할성산소 소거능 및 Cytochrome P450 효소 저해효과)

  • Kim, Hyuck;Yi, Hyo-Seung;Park, Won-Hwan;Moon, Jin-Young
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2007
  • Objectives: Our previous studies have clearly demonstrated that the scavenging activity of reactive oxygen species (ROS), protective effect of lipid peroxidation (LPO), and inhibition of cytochrome P450 isozymes (CYPs) from the Circium japonicum aqua-acupuncture solution (CJAS). But, Circium japonicum water extracted solution (CJWS) was weakly reported in cardiovascular diseases such as oxidative stress-mediated atherosclerosis or its value evaluated. Methods: CJWS was assessed to determine the mechanism of its scavenging activity of ROS and inhibitory effect of CYP 2E1. Results: CJWS exhibited a concentration-dependent scavenger of DPPH and superoxide anions radicals using different assay systems. In addition, CJWS showed dose-dependent free radical scavenging activity, including hydroxyl radicals, peroxynitrite, and nitric oxide. The CJWS was also found to be effective in protecting rat liver homogenate against LPO. Futhermore, the CJWS showed significant inhibition of CYP 2E1 induced by pyrazol in a rat liver microsome. Conclusion : ROS and CYPs may play a role in several diseases, such as cardiovascular disease and heart failure. Our study demonstrated that the CJWS has excellent scavenging activity of ROS. Hence, it is worthwhile to investigate the potential effectiveness of CJWS in preventing oxidative stress-mediated cardiovascular diseases.

  • PDF

Peroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence

  • Park, Young-Ho;Kim, Hyun-Sun;Lee, Jong-Hee;Cho, Seon-A;Kim, Jin-Man;Oh, Goo Taeg;Kang, Sang Won;Kim, Sun-Uk;Yu, Dae-Yeul
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.528-533
    • /
    • 2017
  • Peroxiredoxin I (Prx I) plays an important role as a reactive oxygen species (ROS) scavenger in protecting and maintaining cellular homeostasis; however, the underlying mechanisms are not well understood. Here, we identified a critical role of Prx I in protecting cells against ROS-mediated cellular senescence by suppression of $p16^{INK4a}$ expression. Compared to wild-type mouse embryonic fibroblasts (WT-MEFs), Prx $I^{-/-}$ MEFs exhibited senescence-associated phenotypes. Moreover, the aged Prx $I^{-/-}$ mice showed an increased number of cells with senescence associated-${\beta}$-galactosidase (SA-${\beta}$-gal) activity in a variety of tissues. Increased ROS levels and SA-${\beta}$-gal activity, and reduction of chemical antioxidant in Prx $I^{-/-}$ MEF further supported an essential role of Prx I peroxidase activity in cellular senescence that is mediated by oxidative stress. The up-regulation of $p16^{INK4a}$ expression in Prx $I^{-/-}$ and suppression by overexpression of Prx I indicate that Prx I possibly modulate cellular senescence through $ROS/p16^{INK4a}$ pathway.

Condurango (Gonolobus condurango) Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro -CE-treatment on HeLa: a ROS-dependent mechanism-

  • Bishayee, Kausik;Mondal, Jesmin;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.32-41
    • /
    • 2015
  • Objectives: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs). Results: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha ($TNF-{\alpha}$) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

Anti-Apoptotic Effects of Catalpol on Preimplantaion Porcine Embryos

  • Lee, Yong-Hee;Kim, Jin-Woo;Chae, Sung-Kyu;Ahn, Jae-Hyun;Do, Geon-Yeop;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.30 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • Catalpol, an iridoid glucoside, isolated from the root of Rehmannia glutinosa Libosch. It possesses a broad range of biological and pharmacological activity including anti-tumor, anti-inflammation and anti-oxidant by acting as a free radical scavenger. Therefore, in this study, the effects of catalpol on blastocyst development, expression levels of reactive oxygen species (ROS) and apoptotic index were investigated in porcine embryos. After in vitro maturation and fertilization, porcine embryos were cultured for 6 days in porcine zygote medium 3 (PZM-3) supplemented with catalpol (0, 100, 200 and $400{\mu}M$, respectively). Blastocyst development not significantly improved in the catalpol treated group when compared with control group. Otherwise, the intracelluar levels of ROS were decreased and the numbers of apoptotic nuclei were reduced in the catalpol ($100{\mu}M$) treated porcine blastocysts (P<0.05). On the other hand, blastocyst development was significantly improved in the catalpol ($100{\mu}M$) treated group when compared with the untreated catalpol group under $H_2O_2$ ($200{\mu}M$) induced oxidative stress (P<0.05). Otherwise, the intracellular levels of ROS in catalpol ($100{\mu}M$) treated group were significantly decreased in the untreated catalpol group under $H_2O_2$ ($200{\mu}M$) induced oxidative stress (P<0.05). Furthermore, the total cell numbers of blastocysts were significantly increased (P<0.05) in the catalpol ($100{\mu}M$) treated group under $H_2O_2$ ($200{\mu}M$) induced oxidative stress, whereas numbers of apoptoic nuclei were significantly reduced (P<0.05). In conclusion, our results indicate that treatment of catalpol may have important implications for improving developmental competence and preimplantation quality of porcine embryos through its anti-oxidant and anti-apoptotic effect.

Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death

  • Woo, Sung-Hun;Kim, Bohee;Kim, Sung Hoon;Jung, Byung Chul;Lee, Yongheum;Kim, Yoon Suk
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.148-153
    • /
    • 2022
  • Etoposide is a chemotherapeutic medication used to treat various types of cancer, including breast cancer. It is established that pulsed electromagnetic field (PEMF) therapy can enhance the effects of anti-cancer chemotherapeutic agents. In this study, we investigated whether PEMFs influence the anti-cancer effects of etoposide in MCF-7 cells and determined the signal pathways affected by PEMFs. We observed that co-treatment with etoposide and PEMFs led to a decrease in viable cells compared with cells solely treated with etoposide. PEMFs elevated the etoposide-induced PARP cleavage and caspase-7/9 activation and enhanced the etoposide-induced down-regulation of survivin and up-regulation of Bax. PEMF also increased the etoposide-induced activation of DNA damage-related molecules. In addition, the reactive oxygen species (ROS) level was slightly elevated during etoposide treatment and significantly increased during co-treatment with etoposide and PEMF. Moreover, treatment with ROS scavenger restored the PEMF-induced decrease in cell viability in etoposide-treated MCF-7 cells. These results combined indicate that PEMFs enhance etoposide-induced cell death by increasing ROS induction-DNA damage-caspase-dependent apoptosis.

Dihydroaustrasulfone alcohol induces apoptosis in nasopharyngeal cancer cells by inducing reactive oxygen species-dependent inactivation of the PI3K/AKT pathway

  • Kok-Tong Tan;Yu-Hung Shih;Jiny Yin Gong;Xiang Zhang;Chiung-Yao Huang;Jui-Hsin Su;Jyh-Horng Sheu;Chi-Chen Lin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.383-398
    • /
    • 2023
  • Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.