• Title/Summary/Keyword: ROS level

Search Result 509, Processing Time 0.022 seconds

Toxic Activities of the Oxidant Chromate in Culture Cells (산화성 크롬의 배양세포에서의 독성작용)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.1_2
    • /
    • pp.1-9
    • /
    • 1998
  • The ROS-producing potency of chromium compounds of several oxidation states were determined in the H4 cells. $K_2Cr_2O_7$ as Cr (VI), synthetic Cr (V) compounds and Cr (III) as TPP produced high level of ROS. However, ROS values of Cr-picolinate as Cr (III), CrCl$_2$, CrCI$_2$, were almost equal to the control. The effects of physiological antioxidants compounds which react with free radicals were examined for their effects on chromate-induced production of reactive oxygen species (ROS) in A549 cells after the addition of $K_2Cr_2O_7$. The compounds used were vitamin C (ascorbate), vitamin E ($\alpha$-tocopherol), superoxide dismutase (SOD) and catalase. The preincubation of ascorbate (200uM) with A549 cells for 20hr resulted in a significant reduction of hexavalent chromate(100uM) induced ROS. However, there is no effects of preincubation of the cells with vitamin E succinate (10 and 20uM, 20hr) on the ROS production. Also, the effects of Cr (VI) on the cell cycle of A549 cells was measured by adding the DNA intercalating agent, propidium iodide. S phase of the cell cycle was increased by the chromium (VI) compounds up to 20uM indicating toxicity or possible mitogenic action of the cell. The shoulder in Go/G1 phase at 20uM Cr (VI) with 24 hr treatment indicates apoptosis.

  • PDF

Effect of Dioxin on the Change of Mitochondrial Inner Membrane Potential and the Induction of ROS (다이옥신이 미토콘드리아 내막의 전위차 변화 및 ROS 생성에 미치는 영향)

  • Cho, Il-Young;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • Among the toxicants in the environment dioxin-like compounds, including TCDD(2,3,7,8-Tetrachlorodibenzo-p-Dioxin), are well known as carcinogen and teratogen. TCDD the most toxic of these compounds, may result in a wide variety of adverse health effects in humans and environment, including carconogenesis, hepatotoxicity, teratogenesis, and immunotoxicity. Also TCDD increases superoxide, peroxide radicals and induces oxidative stress that leads to breakage of DNA single-strand and mitochondrial dysfunction. Recently, there have been reports that persistent organic pollutants(POPs) may be causing metabolic disease through mitochondrial toxicity. In order to examine if dioxin brings about toxicity on mitochondria directly, we measured the change of the mitochondrial membrane potential after exposure to TCDD using JC-1 dye. After short time exposure of dioxin, mitochondrial depolarization was observed but it recovered to the control level immediately. This TCDD effect on mitochondrial membrane potential was not correlated either to the production of reactive oxygen species(ROS) or extracellular $Ca^{2+}$ by TCDD. Less than 2 hours exposure of TCDD did not show any change in ROS production but 0.25 nM TCDD for 48 hours or 0.5 nM TCDD for 12 hours exposure did increase in ROS production. Under these conditions of ROS production by TCDD, no changes in the mitochondrial membrane potential by TCDD was observed.

Siniulating Daily Inflow and Release Rates for Irrigation Reservoirs(III) - Model Application to Dafly Reservoir Operations - (관개용 저수지의 일별 유입량과 방류량의 모의 발생 (III) -저수지 모의조작 모형의 응용-)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.95-105
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for irrigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. And the objective or this study is to develop a Daily Irrigation Reservoir Operation Model(DIROM) combining the inflow and the release models which depicts the daily water level fluctuations of an irrigation reservoir, and to evaluate the applicability of the model. DIROM was applied to four reservoirs and daily water levels were simulated and compared to the observed data. The model behaviour was also compared with that of a ten - day based model, Reservoir Operation Study(ROS) which has been applied for determining the design capacity of reservoirs. Various combinations of measured and simulated inflow and release rates for tested reservoirs were used to define the daily water level fluctuations. Simulated release rates and measured inflow data resulted in larger errors, and simulated inflow and release rates produced the smallest errors in water level comparison. Two resevoir operation models, DIROM and ROS were applied to the same reservoir and the simulation results compared. The computational errors of DIROM ware smaller than those of ROS, and DIROM was more sensitive to meteorological conditions. DIROM demonstrated its potenial applicability in water management and operation.

  • PDF

An Antioxidant Davallialactone from Phellinus baumii Enhances Sperm Penetration on In Vitro Fertilization of Pigs

  • Yi, Young-Joo;Lee, In-Kyoung;Lee, Sang-Myeong;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.54-57
    • /
    • 2016
  • Davallialactone (DAVA) is a hispidin analogue derived from the medicinal fungus Phellinus baumii. We examined the effect of DAVA on in vitro fertilization (IVF) of pigs. Boar spermatozoa were incubated in fertilization medium with varying concentrations of DAVA, then sperm motility and reactive oxygen species (ROS) level were evaluated. Higher sperm motility was found following the addition of 0.5 or $1{\mu}M$ DAVA after incubation than addition of other concentrations or controls. ROS level decreased significantly with the addition of DAVA. The rate of normal fertilization was higher in the presence of $1{\mu}M$ DAVA (65.1%) than were those of other concentrations or controls (45.4~59.4%), and the highest total fertilization rate (mono- and polyspermic oocytes) was observed at $1{\mu}M$ DAVA (83%). In conclusion, addition of DAVA to fertilization medium improved sperm motility, and reduced ROS level so as to potentially improve sperm-oocyte binding in IVF, suggesting the potential of a compound isolated from mushrooms in assisted reproductive technology for humans and animals.

A Pattern Recognition Receptor, SIGN-R1, Mediates ROS Generation against Polysaccharide Dextran, Resulting in Increase of Peroxiredoxin-1 and Its Interaction to SIGN-R1

  • Choi, Heong-Jwa;Choi, Woo-Sung;Park, Jin-Yeon;Kang, Kyeong-Hyeon;Prabagar, Miglena G.;Shin, Chan-Young;Kang, Young-Sun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.271-279
    • /
    • 2010
  • Streptococcus pneumoniae is the major pathogen that frequently causes serious infections in children, the elderly and immunocompromised patients. S. pneumoniae is known to produce reactive oxygen species (ROS) and S. pneumoniae-produced ROS is considered to play a role in pneumococci pathogenesis. SIGN-R1 is the principal receptor of capsular polysaccharides (CPSs) of S. pneumoniae. However, there is a considerable lack of knowledge about the protective role of SIGN-R1 against S. pneumoniae-produced ROS in SIGN-$R1^+$ macrophages. While investigating the protective role of SIGN-R1 against ROS, we found that SIGN-R1 intimately bound to peroxiredoxin-1 (Prx-1), one of small antioxidant proteins in vitro and in vivo. This interaction was increased with ROS generation which was produced by stimulating SIGN-R1 with dextran, a polysaccharide ligand of SIGN-R1. Also, SIGN-R1 crosslinking with 22D1 anti-SIGN-R1 antibody increased Prx-1 in vitro or in vivo. These results suggested that SIGN-R1 stimulation with CPSs of S. pneumoniae increase the expression level of Prx-1 through ROS and its subsequent interaction to SIGN-R1, providing an important antioxidant role for the host protection against S. pneumoniae.

Saussurea Lappa Radix-induced cytotoxicity via ROS generation in A549 lung cancer cells (A549세포에 대한 목향추출물의 ROS 매개 세포독성)

  • Lee, Young-Joon;Ku, Sae-Kwang;Kang, Su-Jin
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.169-178
    • /
    • 2013
  • Objectives : Many cancers acquired resistance to chemotherapy, thus limiting its anticancer efficacy. It is known that Glutathione (GSH) is related to the development of drug resistance. The expression of GSH synthesizing glutamylcysteine ligase (GCL) was controlled by nuclear factor-E2-related factor(Nrf2). Previous studies showed that pharmacological depletion of GSH results in ROS increase, apoptotic response, and sensitization to oxidizing stimuli. In the current study, we examined Saussurea Lappa (SL) have the inhibitory effect on Nrf2 activity using human lung cancer A549 cells overexpressing Nrf2. Methods : Cell viability of A549 cells on SL treatment was determined by MTT assay. To detect the apeptosis in SL-treated A549 cells, sub-G1 population was measured by flow cytometry analysis (FACS). The level ROS was determined by FACS and fluorescence microscopy. To investigate whether SL have effect the suppression on Nrf2, we performed western blotting analysis. The GSH content was measured since GSH plays an important role in response to oxidative stress and was regulated by Nrf2. Results : A549 cells treated with an SL extract showed a substantial decrease in cell viability, along with a concomitant increase in apoptosis compared to untreated cells. Treatment of the SL extract led to increased Reactive oxygen species (ROS) production and a suppression of Nrf2. In addition, the antioxidant NAC attenuated SL-induced ROS generation, Nrf2 inhibition, and apoptosis. Taken together, these data show that the SL extract induced the production of ROS, and the inhibition of Nrf2, consequently resulting in A549 cell death. Conclusions : These results suggest that SL might be an effective agent to enhance anticancer drug sensitivity via Nrf2 inhibition.

Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: power of speciation

  • Farh, Mohamed El-Agamy;Kim, Yu-Jin;Abbai, Ragavendran;Singh, Priyanka;Jung, Ki-Hong;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.332-340
    • /
    • 2020
  • Background: The valuable medicinal plant Panax ginseng has high pharmaceutical efficacy because it produces ginsenosides. However, its yields decline because of a root-rot disease caused by Ilyonectria mors-panacis. Because species within Ilyonectria showed variable aggressiveness by altering ginsenoside concentrations in inoculated plants, we investigated how such infections might regulate the biosynthesis of ginsenosides and their related signaling molecules. Methods: Two-year-old ginseng seedlings were treated with I. mors-panacis and I. robusta. Roots from infected and pathogen-free plants were harvested at 4 and 16 days after inoculation. We then examined levels or/and expression of genes of ginsenosides, salicylic acid (SA), jasmonic acid (JA), and reactive oxygen species (ROS). We also checked the susceptibility of those pathogens to ROS. Results: Ginsenoside biosynthesis was significantly suppressed and increased in response to infection by I. mors-panacis and I. robusta, respectively. Regulation of JA was significantly higher in I. robusta-infected roots, while levels of SA and ROS were significantly higher in I. mors-panacis-infected roots. Catalase activity was significantly higher in I. robusta-infected roots followed in order by mock roots and those infected by I. mors-panacis. Moreover, I. mors-panacis was resistant to ROS compared with I. robusta. Conclusion: Infection by the weakly aggressive I. robusta led to the upregulation of ginsenoside production and biosynthesis, probably because only a low level of ROS was induced. In contrast, the more aggressive I. mors-panacis suppressed ginsenoside biosynthesis, probably because of higher ROS levels and subsequent induction of programmed cell death pathways. Furthermore, I. mors-panacis may have increased its virulence by resisting the cytotoxicity of ROS.

The Effects of Silica Nanoparticles in Macrophage Cells

  • Kim, Seungjae;Jang, Jiyoung;Kim, Hyojin;Choi, Hoon;Lee, Kangtaek;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.296-300
    • /
    • 2012
  • Silica nanoparticles, which are applicable in many industrial fields, have been reported to induce cellular changes such as cytotoxicity in various cells and fibrosis in lungs. Because the immune system is the primary targeting organ reacting to internalized exogenous nanoparticles, we tried to figure out the immunostimulatory effect of silica nanoparticles in macrophages using differently sized silica nanoparticles. Using U937 cells we assessed cytotoxicity by CCK-8 assay, ROS generation by CM-$H_2DCFDA$, intracellular $Ca^{{+}{+}}$ levels by staining with Fluo4-AM and IL-8 production by ELISA. At non-toxic concentration, the intracellular $Ca^{{+}{+}}$ level has increased immediately after exposure to 15 nm particles, not to larger particles. ROS generation was detected significantly in response to 15 nm particles. However, all three different sizes of silica nanoparticles induced IL-8 production. 15 nm silica nanoparticles are more stimulatory than larger particles in cytotoxicity, intracellular $Ca^{{+}{+}}$ increase and ROS generation. But IL-8 production was induced to same levels with 50 or 100 nm particles. Therefore, IL-8 production induced by silica nanoparticles may be dependent on other mechanisms rather than intracellular $Ca^{{+}{+}}$ increase and ROS generation.

Effects of Cadmium on Glucose Transport in L6 Myocytes (L6 근육세포에서 포도당 수송능에 미치는 $CdCl_2$의 영향)

  • Kang Donghee;Khil Lee-Yong;park Kwangsik;Lee Byung-Hoon;Moon Chang-Kiu
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.75-85
    • /
    • 2005
  • This study was aimed to know the effect of cadmium chloride (CdCl₂) on glucose transport in L6 myotube and its action mechanism. CdCl₂ increased the 2-deoxy- (l-3H)-D-glucose (2-DOG) uptake 1.9 and 2.4 fold at 10 and 25 μM respectively. To investigate the stimulating-mechanism of glucose transport induced by CdCl₂, the wortmannin and PD98059 were used as PI3K (phosphatidylinositol 3-kinase) inhibitor and MAPK inhibitor respectively, which did not affect 2-DOG uptake. This fact suggests that CdCl₂ induced 2-DOG uptake may not be concerned to the insulin signalling pathway. Whereas nifedipine, a calcium channel blocker, and trifluoperazine, a calmodulin inhibitor, were found to inhibit the 2-DOG uptake stimulted by CdCl₂. In addition, we also measured the ROS (reactive oxygen species) production and GSH level in L6 myotube to investigate the correlation between the glucose uptake and ROS. CdCl₂(25 μM) increased ROS generation approximately 1.5 fold and changed the cellular GSH level, but GSSG/GSH ratio remained unchanged. CdCl₂ stimulated 2-DOG uptake and ROS generation were inhibited by N-acetylcystein. And BSO pretreatment, a potent inhibitor of γ-GCS, resulted in the dramatic decrease of 2-DOG uptake and also the increase of the sensitivity to cadmium cytotoxicity. The obtained results suggest that CdCl₂-stimulated glucose uptake might be based on the activation of HMP shunt as an antioxidant defense mechanism of the cells.

Protective Effect of Buplueri Radix (BR) Against 1,2,4-benzentriol Induced DNA Damage in Human Lymphocytes (Buplueri Radix 의 1,2,4-benzentriol에 의해 유발된 DNA Damage에 대한 보호효과에 대한 연구)

  • Lee, Young-Joon;Kang, Su-Jin
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.2
    • /
    • pp.51-59
    • /
    • 2008
  • Objectives : Buplueri Radix (BR), used medical plant in Korea traditional medicine, contains various compounds, including a series of triterpene saponins known as saikosaponins. We performed this study for the protective effect of BR against oxidative damage induced by 1,2,4-benzentriol(BT) in human lymphocytes. Methods : In order to investigate the protective effect of BR against carcinogens, genotoxicity induced by benzene metabolite, BT were performed using cytokinesis-block micronucleus(CBMN) assay and comet assay. Results : The frequency of micronucleus at 25, 50 and $100{\mu}M$ concentration of BT were $8{\pm}2.36$, $23{\pm}2.31$, $35{\pm}4.17$ respectively. In addition of BR with concentration of 25 and $50{\mu}g/mL$, MN frequencies were significantly decreased. According to comet assay, BT induced DNA damage in a dose-dependent manner at concentration of 10 and 50 while BT with BR treatment decreased DNA breakage. No genotoxicity was observed by BR($25{\sim}50{\mu}g/mL$) treatment alone on DNA breakage. Since BT can induce DNA damage through the generation of reactive oxygen species(ROS), we examined the level of ROS in human lymphocytes treated with BT and/or BR using DCF-DA, ROS-sensitive probe. The generation of ROS in BT-treated cells was also observed, and BR addition inhibited the level of BT-induced DNA damage. Conclusions : From above results it is suggested that BR could protect the cell and DNA from pro-oxidant effect by ROS by BT

  • PDF