• Title/Summary/Keyword: ROI Mask

Search Result 22, Processing Time 0.017 seconds

Fast Dynamic ROI Coding using the Mask Patterns in JPEG2000 (JPEG2000에서 마스크 패턴을 이용한 빠른 동적 ROI 코딩)

  • Kang, Juong-Hyon;Seo, Yeong-Geon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.349-354
    • /
    • 2011
  • In ROI processing of JPEG2000, a region of large image indicated by the user must be processed preferentially, because it takes a considerable amount of time to display the full image. When the user indicates a region of the outlined image, then the browser masks the region and sends the mask information to the server that transmitted the outlined image. The server that receives the mask information preferentially sends the corresponding code blocks. Here, a quick generation of mask information is important. In this paper, we use 48 predefined mask patterns, which are defined according to the distribution shape of ROI and background to reduce the computing time. As a result, compared to other methods that precisely handles the ROI and background, the processing time of the method is remarkably reduced, but the quality is short of the existing methods just a little bit.

An Adaptive ROI Mask Generation for ROI coding of JPEG2000 (JPEG200의 관심영역 부호화를 위한 적응적인 관심영역 마스크 생성 방법)

  • Kang, Ki-Jun;Seo, Yeong-Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.39-47
    • /
    • 2007
  • In this thesis, a method of generating an adaptable Region-Of-Interest(ROI) Mask for the Region-Of-Interest coding is suggested. In the method, an ROI Mask is generated using the information of the ROI designated by a user. In the existed method of ROI coding, after scanning all the pixels in order and discriminating an ROI, an ROI Mask is generated. But, in our method, after scanning a part of pixels based on the shape pattern of an ROI and discriminating a ROI by one code block unit, an ROI Mask is generated. Moreover, from the method, a pattern number, threshold of a ROI and background threshold parameter are provided. According to the result of its comparing test with the existed methods to show the usability, it is proved that our method is superior in speed to the existed ones.

  • PDF

A Slope Information Based Fast Mask Generation Technique for ROI Coding (관심영역 코딩을 위한 기울기 정보 기반의 빠른 마스크 생성 기법)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 2009
  • To support dynamic Region-of-Interest(ROI) in JPEG2000, a fast ROI mask generation is needed. In the existing methods of ROI coding, after scanning all the pixels in order and discriminating ROI, an ROI mask has been generated. Our method scans 4 pixels of the corners in one code block, and then based on those informations, scans the edges from the corners to get the boundaries of ROI and background. These informations are consisted of a distributed information of ROI and two coordinates of the pixels, which are the points the edges and the boundaries meet. These informations are transmitted to encoder and supported for fast ROI mask generation. There were no great differences between the proposed method and the existing methods in quality, but the proposed method showed superiority in speed.

An Adaptive Region-of-Interest Coding Based on EBCOT (EBCOT 기반의 적응적 관심영역 코딩)

  • Kang, Ki-Jun;Lee, Bu-Kwon;Seo, Yeong-Geon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1445-1454
    • /
    • 2006
  • To compress a specific part of an image with high quality or to transfer it, JPEG2000 standard offers an ROI(Region-of-Interest) image coding method. What is important in ROI coding is to process relative importance between ROI and background and to process ROI mask. We propose an adaptive ROI coding method supplemented the existing Implicit ROI coding and Modified implicit ROI coding to improve image quality and reduce ROI mask information. The proposed method is an EBCOT-based ROI coding that extracts ROI from the compressed bitstream, and gets the ROI mask information by classifying the codeblocks into 6 patterns. The information includes the pattern type(3bit) and the width(5bit) expressing the boundary between two regions for each codeblock. As a result, the method shows an excellent compression performance in ROI region as well as in the whole region of an image.

  • PDF

A Rapid Region-of-Interest Processing Technique using Mask Patterns for JPEG2000 (JPEG2000에서 마스크 패턴을 이용한 빠른 관심영역 처리 기법)

  • Lee, Jum-Sook;Ha, Seok-Woon;Park, Jae-Heung;Seo, Yeong-Geon;Kang, Ki-Jun;Hong, Seok-Won;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • An region of interest processing technique is to handle preferentially some part of an image dynamically according to region of interest of the users in JPEG2000 image. A small image is not important, but in a big image the specified region that the user indicated has to be handled preferentially because it takes long time to display the whole image. If the user indicates a region of the outline image, the browser masks the region and sends the mask information to the source that transmitted the image. The server which got the mask information preferentially sends the code blocks matching the masks. Here, quickly generating mask information is important, so, in this paper using predefined 48 mask patterns, selecting one of the patterns according to the distribution of ROI(Region-of-Interest) and background, we remarkably reduced the time computing the mask region. Blocks that the patterns are applied are the blocks mixed of ROI and background in a block. If a whole block is an ROI or a background, these patterns are not applied. As results, comparing to the method that precisely handles ROI and background, the quality is unsatisfactory but the processing time remarkably reduced.

A Generation of ROI Mask and An Automatic Extraction of ROI Using Edge Distribution of JPEG2000 Image (JPEG2000 이미지의 에지 분포를 이용한 ROI 마스크 생성과 자동 관심영역 추출)

  • Seo, Yeong Geon;Kim, Hee Min;Kim, Sang Bok
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.583-593
    • /
    • 2015
  • Today, caused by the growth of computer and communication technology, multimedia, especially image data are being used in different application divisions. JPEG2000 that is widely used these days provides a Region-of-Interest(ROI) technique. The extraction of ROI has to be rapidly executed and automatically extracted in a huge amount of image because of being seen preferentially to the users. For this purpose, this paper proposes a method about preferential processing and automatic extraction of ROI using the distribution of edge in the code block of JPEG2000. The steps are the extracting edges, automatical extracting of a practical ROI, grouping the ROI using the ROI blocks, generating the mask blocks and then quantization, ROI coding which is the preferential processing, and EBCOT. In this paper, to show usefulness of the method, we experiment its performance using other methods, and executes the quality evaluation with PSNR between the images not coding an ROI and coding it.

Fault Detection of Ceramic Imaging using Blob Labeling Method (Blob Labeling 기법을 이용한 세라믹 영상에서 결함 검출)

  • Lee, Min-Jung;Lee, Dae-Woo;Yi, Gyeong-Yun;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.519-521
    • /
    • 2015
  • 세라믹 소재 영상에서 결함 영역이 다른 영역보다 명암도가 밝게 나타나는 정보를 이용하여 ROI 영역을 추출한다. 추출된 ROI 영역에서 Blurring 기법을 적용하여 미세 잡음을 제거한다. 미세 잡음이 제거된 ROI 영역에서 Median Filter기법을 적용하여 임펄스 잡음을 제거한다. 임펄스 잡음이 제거된 영역에서 Prewit Mask을 적용하여 수평과 수직 에지를 검출하고 검출된 에지에 윤곽선 추적 기법을 적용하여 결함 영역의 경계를 보정한다. 보정된 영상에서 Blob Labeling 기법을 적용하여 최종적으로 결함 영역을 추출한다. 제안된 방법을 8mm와 10mm 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 결함 검출 방법보다 제안된 검출 방법의 검출 성능이 개선된 것을 확인하였다.

  • PDF

A Revised Dynamic ROI Coding Method Based On The Automatic ROI Extraction For Low Depth-of-Field JPEG2000 Images (낮은 피사계 심도 JPEG2000 이미지를 위한 자동 관심영역 추출기반의 개선된 동적 관심영역 코딩 방법)

  • Park, Jae-Heung;Kim, Hyun-Joo;Shim, Jong-Chae;Yoo, Chang-Yeul;Seo, Yeong-Geon;Kang, Ki-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, we propose a revised dynamic ROI (Region-of-Interest) coding method in which the focused ROI is automatically extracted without help from users during the recovery process of low DOF (Depth-of-Field) JPEG2000 image. The proposed method creates edge mask information using high frequency sub-band data on a specific level in DWT (Discrete Wavelet Transform), and then identifies the edge code block for a high-speed ROI extraction. The algorithm scans the edge mask data in four directions by the unit of code block and identifies the edge code block simply and fastly using a edge threshold. As the results of experimentation applying for Implicit method, the proposed method showed the superiority in the side of speed and quality comparing to the existing methods.

Automatic Extraction and Preferred Processing of ROI in JPEG2000 (JPEG2000에서 ROI의 자동 추출과 우선적 처리)

  • Park, Jae-Heung;Seo, Yeong-Geon;Kim, Sang-Bok;Kang, Ki-Jun;Kim, Ho-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.127-136
    • /
    • 2008
  • A digitized image passes by encoding, storing or transmitting to show it to users. In this process, may be users would want to see a specific region of the image. And depending on the system features or in the case that the resolution of the image is large, it will take a huge time that the image show to the users. In this time, it will be resonable that the part users want to see shows earlier and afterward the other parts show. For this, JPEG2000 standards provide ROI. Although ROI extraction that users specify ROI arbitrarily is the best, people not always participate in doing all the images. There needs an automatic ROI extracting and storing in some images. JPEG2000 should extract and send an ROI automatically when the images is encoded without ROI. This study proposes a method that automatically extracts an ROI, makes the ROI masks, transfers the masked image preferentially and the background. And the study compares and experiments the proposed method and the method not having ROI.

  • PDF

An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image (피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong;Kim, Hyung-Jun;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.93-101
    • /
    • 2009
  • This paper suggests a new algorithm automatically searching for Region-of-Interest(ROI) with high speed, using the edge information of high frequency subband transformed with wavelet. The proposed method executes a searching algorithm of 4-direction object boundary by the unit of block using the edge information, and detects ROIs. The whole image is splitted by $64{\times}64$ or $32{\times}32$ sized blocks and the blocks can be ROI block or background block according to taking the edges or not. The 4-directions searche the image from the outside to the center and the algorithm uses a feature that the low-DOF image has some edges as one goes to center. After searching all the edges, the method regards the inner blocks of the edges as ROI, and makes the ROI masks and sends them to server. This is one of the dynamic ROI method. The existing methods have had some problems of complicated filtering and region merge, but this method improved considerably the problems. Also, it was possible to apply to an application requiring real-time processing caused by the process of the unit of block.