• Title/Summary/Keyword: ROI Extraction

Search Result 103, Processing Time 0.017 seconds

Lane Detection in Complex Environment Using Grid-Based Morphology and Directional Edge-link Pairs (복잡한 환경에서 Grid기반 모폴리지와 방향성 에지 연결을 이용한 차선 검출 기법)

  • Lin, Qing;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.786-792
    • /
    • 2010
  • This paper presents a real-time lane detection method which can accurately find the lane-mark boundaries in complex road environment. Unlike many existing methods that pay much attention on the post-processing stage to fit lane-mark position among a great deal of outliers, the proposed method aims at removing those outliers as much as possible at feature extraction stage, so that the searching space at post-processing stage can be greatly reduced. To achieve this goal, a grid-based morphology operation is firstly used to generate the regions of interest (ROI) dynamically, in which a directional edge-linking algorithm with directional edge-gap closing is proposed to link edge-pixels into edge-links which lie in the valid directions, these directional edge-links are then grouped into pairs by checking the valid lane-mark width at certain height of the image. Finally, lane-mark colors are checked inside edge-link pairs in the YUV color space, and lane-mark types are estimated employing a Bayesian probability model. Experimental results show that the proposed method is effective in identifying lane-mark edges among heavy clutter edges in complex road environment, and the whole algorithm can achieve an accuracy rate around 92% at an average speed of 10ms/frame at the image size of $320{\times}240$.

Inter-Lane Distance Measurement Method for Predicting the Lateral Movement of the Vehicle in Front (전방 차량의 횡간 이동 예측을 위한 차선 간 거리 측정 방법)

  • Sung-Jung Yong;Hyo-Gyeong Park;Seo-young Lee;Yeon-Hwi You;Il-Young Moon
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.593-600
    • /
    • 2022
  • Various sensors such as lidar, radar, and camera are fused and used in autonomous vehicles. Rider and radar sensors are difficult to popularize because they are expensive equipment. In order to popularize autonomous vehicles, research that can replace expensive equipment is continuously being conducted. In this paper, we use a single camera that is inexpensive and can be easily mounted. We propose a method for detecting the wheels and adjacent lanes of a front-side vehicle of a driving vehicle and estimating distances. Our proposed method detects lanes and wheels from frame images after frame extraction via input images. In addition, the distance is measured and compared with the actual distance measured in the actual road environment. The distance could be calculated relatively accurately within the error range of ± 3 cm. Through this, it is expected that the camera can be used as an alternative means when the cost of autonomous vehicles is reduced or when the lidar or radar sensor fails.

Development of the Multi-Parametric Mapping Software Based on Functional Maps to Determine the Clinical Target Volumes (임상표적체적 결정을 위한 기능 영상 기반 생물학적 인자 맵핑 소프트웨어 개발)

  • Park, Ji-Yeon;Jung, Won-Gyun;Lee, Jeong-Woo;Lee, Kyoung-Nam;Ahn, Kook-Jin;Hong, Se-Mie;Juh, Ra-Hyeong;Choe, Bo-Young;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.153-164
    • /
    • 2010
  • To determine the clinical target volumes considering vascularity and cellularity of tumors, the software was developed for mapping of the analyzed biological clinical target volumes on anatomical images using regional cerebral blood volume (rCBV) maps and apparent diffusion coefficient (ADC) maps. The program provides the functions for integrated registrations using mutual information, affine transform and non-rigid registration. The registration accuracy is evaluated by the calculation of the overlapped ratio of segmented bone regions and average distance difference of contours between reference and registered images. The performance of the developed software was tested using multimodal images of a patient who has the residual tumor of high grade gliomas. Registration accuracy of about 74% and average 2.3 mm distance difference were calculated by the evaluation method of bone segmentation and contour extraction. The registration accuracy can be improved as higher as 4% by the manual adjustment functions. Advanced MR images are analyzed using color maps for rCBV maps and quantitative calculation based on region of interest (ROI) for ADC maps. Then, multi-parameters on the same voxels are plotted on plane and constitute the multi-functional parametric maps of which x and y axis representing rCBV and ADC values. According to the distributions of functional parameters, tumor regions showing the higher vascularity and cellularity are categorized according to the criteria corresponding malignant gliomas. Determined volumes reflecting pathological and physiological characteristics of tumors are marked on anatomical images. By applying the multi-functional images, errors arising from using one type of image would be reduced and local regions representing higher probability as tumor cells would be determined for radiation treatment plan. Biological tumor characteristics can be expressed using image registration and multi-functional parametric maps in the developed software. The software can be considered to delineate clinical target volumes using advanced MR images with anatomical images.