Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.9-17
/
2021
In this study, we propose a part of the CDSS(Clinical Decision Support System) study, a system that can classify chemotherapy, one of the treatment methods for colorectal cancer patients. In the treatment of colorectal cancer, the selection of chemotherapy according to the patient's condition is very important because it is directly related to the patient's survival period. Therefore, in this study, chemotherapy was classified using a machine learning algorithm by creating a baseline model, a pathological model, and a combined model using both characteristics of the patient using the individual and pathological characteristics of colorectal cancer patients. As a result of comparing the prediction accuracy with Top-n Accuracy, ROC curve, and AUC, it was found that the combined model showed the best prediction accuracy, and that the LGBM algorithm had the best performance. In this study, a chemotherapy classification model suitable for the patient's condition was constructed by classifying the model by patient characteristics using a machine learning algorithm. Based on the results of this study in future studies, it will be helpful for CDSS research by creating a better performing chemotherapy classification model.
The Journal of Korean Institute of Information Technology
/
v.17
no.12
/
pp.21-28
/
2019
Side effects of drugs mean harmful and unintended effects resulting from drugs used to prevent, diagnose, or treat diseases. These side effects can lead to patients' death and are the main causes of drug developmental failures. Thus, various methods have been tried to identify side effects. These can be divided into biological and systems biology approaches. In this study, we use systems biology approach and focus on using various phenotypic information in addition to the chemical structure and target proteins. First, we collect datasets that are used in this study, and calculate similarities individually. Second, we generate a set of features using the similarities for each drug-side effect pair. Finally, we confirm the results by AUC(Area Under the ROC Curve), and showed the significance of this study through a comparison experiment.
KSCE Journal of Civil and Environmental Engineering Research
/
v.42
no.6
/
pp.843-852
/
2022
Despite continuous safety management, the death rate of construction workers is not decreasing every year. Accordingly, various studies are in progress to prevent construction site accidents. In this paper, we developed an AI-based priority inspection target selection model that preferentially selects sites are expected to cause construction accidents among construction sites with construction costs of less than 5 billion won (KRW). In particular, Random Forest (90.48 % of accident prediction AUC-ROC) showed the best performance among applied AI algorithms (Classification analysis). The main factors causing construction accidents were construction costs, total number of construction days and the number of construction performance evaluations. In this study an ROI (return of investment) of about 917.7 % can be predicted over 8 years as a result of better efficiency of manual inspections human resource and a preemptive response to construction accidents.
In this study, we predicted the presence of fog with a one-hour delay using the XGBoost DART machine learning algorithm for Andong, which had the highest occurrence of fog among inland stations from 2016 to 2020. We used six datasets: meteorological data, agricultural observation data, additional derived data, and their expanded data. The weather phenomenon numbers obtained through naked-eye observations and the visibility distances measured by visibility meters were classified as fog [1] or no-fog [0]. We set up twelve machine learning modeling experiments and used data from 2021 for model validation. We mainly evaluated model performance using recall and AUC-ROC, considering the harmful effects of fog on society and local communities. The combination of oversampled meteorological data features and the target induced by weather phenomenon numbers showed the best performance. This result highlights the importance of naked-eye observations in predicting fog using machine learning algorithms.
The subway is a means of public transportation that plays an important role in the transportation system of modern cities. However, congestion often occurs due to sudden breakdowns and system outages, causing inconvenience. Therefore, in this paper, we conducted a study on failure prediction and prevention using machine learning to efficiently operate the subway system. Using UC Irvine's MetroPT-3 dataset, we built a subway breakdown prediction model using logistic regression. The model predicted the non-failure state with a high accuracy of 0.991. However, precision and recall are relatively low, suggesting the possibility of error in failure prediction. The ROC_AUC value is 0.901, indicating that the model can classify better than random guessing. The constructed model is useful for stable operation of the subway system, but additional research is needed to improve performance. Therefore, in the future, if there is a lot of learning data and the data is well purified, failure can be prevented by pre-inspection through prediction.
Kang, Ji Hyeon;Lim, Eun Young;Lee, Nam Ju;Yu, Hye Min
Journal of Korean Clinical Nursing Research
/
v.30
no.1
/
pp.35-44
/
2024
Purpose: The purpose of this study is to compare the predictive validity of pressure injury risk assessment, Braden, Braden Q and Braden QD for pediatric patients. Methods: Prospective observational study included patients under the age of 19 who were hospitalized to general wards, intensive care units of a children's hospital. Characteristics related to pressure injury were collected, and predicted validity was compared by calculating the areas under the curve (AUC) of the Braden, Braden Q, and Braden QD scales. Results: A total of 689 patients were included in the study. A total of 13 (1.9%) patients had pressure injuries, and the number of pressure injuries was 17. Factors related to the occurrence of pressure injuries were 9 (52.9%) immobility-related and 8 (47.1%) medical device-related. The AUC for each scale was .91 (95% CI .89~.94) for Braden, .92 (95% CI .90~.95) for Braden Q, and .94(95% CI .92~.96) for Braden QD. The optimal cut-off points were identified as 16 for Braden (sensitivity=88.8%, specificity=86.4%), 17 for Braden Q(sensitivity=63.6%, specificity=94.9%), and 12 for Braden QD (sensitivity=94.4%, specificity=88.7%). Conclusion: The Braden QD scale demonstrated the highest predictive validity for pressure injuries in pediatric patients and is expected to be valuable tool in preventing pediatrics pressure injuries.
Background and Purpose: Since the onset of the coronavirus disease 2019 pandemic, the Telephone-Montreal Cognitive Assessment (T-MoCA) has gained popularity as a remote cognitive screening tool. T-MoCA includes items from the original MoCA (MoCA-30), excluding those requiring visual stimuli, resulting in a maximum score of 22 points. This study aimed to assess whether the T-MoCA items (MoCA-22) demonstrate comparable discriminatory power to MoCA-30 and Mini-Mental State Examination (MMSE) in screening for mild cognitive impairment (MCI) and dementia. Methods: Participants included 233 cognitively normal (CN) individuals, 175 with MCI, and 166 with dementia. All completed the Korean-MoCA-30 (K-MoCA-30) and Korean-MMSE (K-MMSE), with the Korean-MoCA-22 (K-MoCA-22) scores derived from the K-MoCA-30 responses. A receiver operating characteristic (ROC) curve analysis was conducted. Results: K-MoCA-22 showed a strong correlation with K-MoCA-30 and a moderate correlation with K-MMSE. Scores decreased progressively from CN to MCI and dementia, with significant differences between groups, consistent with K-MoCA-30 and K-MMSE. The study also explored modified K-MoCA-22 index scores across 5 cognitive domains. ROC curve analysis revealed that the area under the curve (AUC) for K-MoCA-22 was significantly smaller than that for K-MoCA-30 in distinguishing both MCI and dementia from CN. However, no significant difference in AUC was found between K-MoCA-22 and K-MMSE, indicating similar discriminatory power. Additionally, the discriminability of K-MoCA-22 varied by education level. Conclusions: These results indicate that K-MoCA-22, although slightly less effective than K-MoCA-30, still shows good to excellent discriminatory power and is comparable to K-MMSE in screening for MCI and dementia.
Journal of the Korea Society of Computer and Information
/
v.29
no.8
/
pp.165-170
/
2024
This study aims to verify the accuracy of the air quality management system in Yangju City using an artificial intelligence (AI) evaluation model. The consistency and reliability of fine dust data were assessed by comparing public data from the Ministry of Environment with data from Yangju City's air quality management system. To this end, we analyzed the completeness, uniqueness, validity, consistency, accuracy, and integrity of the data. Exploratory statistical analysis was employed to compare data consistency. The results of the AI-based data quality index evaluation revealed no statistically significant differences between the two datasets. Among AI-based algorithms, the random forest model demonstrated the highest predictive accuracy, with its performance evaluated through ROC curves and AUC. Notably, the random forest model was identified as a valuable tool for optimizing the air quality management system. This study confirms that the reliability and suitability of fine dust data can be effectively assessed using AI-based model performance evaluation, contributing to the advancement of air quality management strategies.
Our objective was to investigate radiomics signatures and prediction models defined by four segmentation methods in using 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET) imaging of lung metastases of soft-tissue sarcomas (STSs). For this purpose, three fixed threshold methods using the standardized uptake value (SUV) and gradient-based edge detection (ED) were used for tumor delineation on the PET images of STSs. The Dice coefficients (DCs) of the segmentation methods were compared. The least absolute shrinkage and selection operator (LASSO) regression and Spearman's rank, and Friedman's ANOVA test were used for selection and validation of radiomics features. The developed radiomics models were assessed using ROC (receiver operating characteristics) curve and confusion matrices. According to the results, the DC values showed the biggest difference between SUV40% and other segmentation methods (DC: 0.55 and 0.59). Grey-level run-length matrix_run-length nonuniformity (GLRLM_RLNU) was a common radiomics signature extracted by all segmentation methods. The multivariable logistic regression of ED showed the highest area under the ROC (receiver operating characteristic) curve (AUC), sensitivity, specificity, and accuracy (AUC: 0.88, sensitivity: 0.85, specificity: 0.74, accuracy: 0.81). In our research, the ED method was able to derive a significant model of radiomics. GLRLM_RLNU which was selected from all segmented methods as a meaningful feature was considered the obvious radiomics feature associated with the heterogeneity and the aggressiveness. Our results have apparently showed that radiomics signatures have the potential to uncover tumor characteristics.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.5
/
pp.1027-1034
/
2024
This study aims to address the issues of outliers and missing values in AI-based smart farming to improve data quality and enhance the accuracy of agricultural predictive activities. By utilizing real data provided by the Rural Development Administration (RDA) and the Korea Agency of Education, Promotion, and Information Service in Food, Agriculture, Forestry, and Fisheries (EPIS), outlier detection and missing value imputation techniques were applied to collect and manage high-quality data. For successful smart farm operations, an IoT-based AI automatic growth measurement model is essential, and achieving a high data quality index through stable data preprocessing is crucial. In this study, various methods for correcting outliers and imputing missing values in growth data were applied, and the proposed preprocessing strategies were validated using machine learning performance evaluation indices. The results showed significant improvements in model performance, with high predictive accuracy observed in key evaluation metrics such as ROC and AUC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.