• Title/Summary/Keyword: ROC(Receiver operating characteristic)

Search Result 371, Processing Time 0.017 seconds

Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium (심근관류 SPECT의 정량적 분석에서 관류정량값 정상변이의 고려: 생존심근 평가에서의 유용성)

  • Paeng, Jin-Chul;Lim, Il-Han;Kim, Ki-Bong;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Purpose: Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. Materials and Methods: In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F = 28:27) of low-likelihood for coronary artery disease were enrolled and $^{201}TI$ rest/$^{99m}Tc$-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. $^{201}TI$ rest/$^{99m}Tc$-MIBI stress / $^{201}TI$ 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, $Q_{delay}$ (perfusion measurement), ${\Delta}_{delay}$ ($Q_{delay}$ - m) and $Z_{delay}$ (($Q_{delay}$ - m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Results: Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was $51.8{\pm}6.5$ and the highest segmental perfusion was $87.0{\pm}5.9$, and they are $58.7{\pm}8.1$ and $87.3{\pm}6.0$, respectively in women. In the viability assessment $Q_{delay}$ showed AUC of 0.633, while those for ${\Delta}_{delay}$ and $Z_{delay}$ were 0.735 and 0.716, respectively. The AUCs of ${\Delta}_{delay}$ and $Z_{delay}$ were significantly higher than that of $Q_{delay}$ (p = 0.001 and 0.018, respectively). The diagnostic performance of ${\Delta}_{delay}$, which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. Conclusion: On automatic quantification of myocardial perfusion SPECT, the normal variation of perfusion measurements were considerable among segments. In the viability assessment, the parameters considering normal variation showed better diagnostic performance than the direct perfusion measurement. This study suggests that consideration of normal variation is important in the analysis of measurements on quantitative myocardial perfusion SPECT.