• Title/Summary/Keyword: ROBOKER arm

Search Result 4, Processing Time 0.023 seconds

Intelligent Balancing Control of Inverted Pendulum on a ROBOKER Arm Using Visual Information (영상 정보를 이용한 ROBOKER 팔 위의 역진자 시스템의 지능 밸런싱 제어 구현)

  • Kim, Jeong-Seop;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.595-601
    • /
    • 2011
  • This paper presents balancing control of inverted pendulum on the ROBOKER arm using visual information. The angle of the inverted pendulum placed on the robot arm is detected by a stereo camera and the detected angle is used as a feedback and tracking error for the controller. Thus, the overall closed loop forms a visual servoing control task. To improve control performance, neural network is introduced to compensate for uncertainties. The learning algorithm of radial basis function(RBF) network is performed by the digital signal controller which is designed to calculate floating format data and embedded on a field programmable gate array(FPGA) chip. Experimental studies are conducted to confirm the performance of the overall system implementation.

Embedded Hardware Implementation of an FPGA Based Nonlinear PID Controller for the ROBOKER Arm (ROBOKER 팔의 제어를 위한 FPGA 기반 비선형 제어기의 임베디드 하드웨어 구현)

  • Kim, Jeong-Seob;Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1153-1159
    • /
    • 2007
  • This paper presents the hardware implementation of nonlinear PID controllers for the ROBOKER humanoid robot arms. To design the nonlinear PID controller on an FPGA chip, nonlinear functions as well as the conventional PID control algorithm have to be implemented by the hardware description language. Therefore, nonlinear functions such as trigonometric or exponential functions are designed on an FPGA chip. Simulation studies of the position control of humanoid arms are conducted and results are compared. Superior performances by the nonlinear PID controllers are confirmed when disturbances are present. Experiments of humanoid robot arm control tasks are conducted to confirm the performance of our hardware design and the simulation results.

Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control (힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.

Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision (스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험)

  • Lee, Woon-Kyu;Kim, Dong-Min;Choi, Ho-Jin;Kim, Jeong-Seob;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.