• Title/Summary/Keyword: RNase G

Search Result 23, Processing Time 0.031 seconds

Studies on the Functional Role of RNase G in the Regulation of Escherichia coli Enolase Expression Under Microaerobic Conditions (미세호기성 조건에서 Escherichia coli 에놀라아제의 발현에 있어서 RNase G의 역할에 대한 연구)

  • Sim, Se-Hoon;Kim, Yong-Hak;Sim, Min-Ji;Lim, Bo-Ram;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.229-232
    • /
    • 2010
  • Enolase is one of the glycolytic enzymes, which are involved in a central energy metabolism present in nearly all organisms. In Escherichia coli, enolase constitutes RNA degradosome with RNase E, PNPase and RNA helicase, which are involved in most mRNA degradation and RNA processing. Recently, it has been reported that RNase G, an RNase E homolog, degrades eno mRNA. To examine a functional role of RNase G in enolase expression which is known to be up-regulated under microaerobic condition, we carried out experiments. Here, we report that expression levels of enolase and RNase G are not correlated under microaerobic condition. Based on this observation, we suggest the existence of an unknown factor(s) which regulate the activity of RNase G or enolase mRNA under microaerobic conditions.

The Effect of Indole Acetic and Abscisic Acid on Ribonucleic Acid and Ribonuclease (Indole acetic acid 와 Abscisic acid 가 핵산(核酸)과 RNase 에 미치는 영향에 관(關)하여)

  • Jo, D.H.;Lee, C.Y.
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.181-186
    • /
    • 1972
  • Wheat coleoptile sections were treated with either $1.5{\times}10^{-5}M$ ABA or $5×10^{-5}M$ IAA in vitro, the results may be summarized as follows, 1. The treatmert of IAA decreased the level of high molecular weight RNA F2 and F3 but that with ABA increased the F4 level. 2. IAA caused an increased activity of G2 isozyme, while ABA suppressed the activity of G3 isozyme. 3. The results may suggest that there may exist common effects of IAA and ABA on RNA and RNase. 4. The latent RNase activity caused by SH blocking reagent (p-hydroxymercury benzoate, Pb et al) was not observed.

  • PDF

Induction of Ribosomal Ribonuclease during Catabolic Repression in Saccharomyces uvarum (Saccharomyces uvarum의 Catabolic Repression 시기에 유도되는 Ribosomal Ribonuclease에 대한 연구)

  • Yoon, Seong-Nyo;Lee, Ki-Sung;Choi, Yong-Keel
    • The Korean Journal of Mycology
    • /
    • v.14 no.3
    • /
    • pp.201-207
    • /
    • 1986
  • In order to study subcellular locality and characteristics of ribonuclease in Saccharomyces uvarum, subcelllar fractions $45,000{\times}g$ pellet fraction, post ribosomal fraction and ribosome fraction were extracted during late log, stationary phase and sugar starvation conditions. Ribonuclease activity was significantly increased in ribosomal fraction under stationary and sugar starvation conditions. Ribosomal ribonuclease was extracted by EDTA plus streptomycin sulfate and ammonium sulfate precipitation. The amount of ribosome in stationary and sugar starvation condition was decreased three to six fold as compared to that in the early log phase. The end products of ribosomal ribonuclease were detected by thin layer chromatography. It is postulated that the increase of ribosomal ribonuclease activity under sugar starvation results from 5'-rRNase, while the increase of rRNase activity under stationary phase results from 3'-rRNase.

  • PDF

Development of Saccharomyces cerevisiae Strains with High RNA Content (리보핵산을 다량으로 함유하는 Saccharomyces cerevisiae 균주의 개발)

  • Kim, Jae-Sik;Kim, Jin-Wook;Shim, Won;Min, Byoung-Cheol;Kim, Jung-Wan;Park, Kwan-Hwa;Pek, Un-Hua
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.465-474
    • /
    • 1999
  • RNase activity of Saccharomyces cerevisiae ATCC 7754 was investigated to obtain strains with high ribonucleic acid (RNA) content. The yeast strain contained two RNase activities; an acidic RNase with a optima of pH $3{\sim}4$ and an alkaline RNase with a optima pH 9. The acidic RNase activity was inhibited by $0.08\;M\;HgCl_{2}$ most drastically. The alkaline RNase activity was inhibited by 2.0 M NaCl or KCl, while enhanced by addition of $0.05\;M\;CaCl_{2},\;0.02\;M\;ZnSO_{4},\;or\;0.008\;M\;HgCl_{2}$. Various mutants of Saccharomyces cerevisiae ATCC 7754 were isolated by ethylmethane sulfonate (EMS) treatment or $\gamma$-ray/ultra violet irradiation. Among the mutants that were sensitive to high concentration of KCl which inhibits alkaline RNase, B24 was selected for high RNA content per culture volume. Growth characteristics of the mutant were comparable to those of the mother strain with optimum growth at pH $4.5{\sim}5.5$. The mutant accumulated higher content of RNA than the mother strain when glucose was used as the carbon source. However, both growth rate and total RNA content of the mutant were higher in molasses medium than in glucose medium. RNA content of the mutant increased rapidly during the early stage of growth, and then decreased gradually until the culture reached stationary phase by a fed-batch culture in a 5 L jar fermenter. Maximal cell harvest and the final RNA content using the mutant B24 were 69.6 g/L culture broth and 19.8 g/100 g of the dry cell while those using the mother strain were 68 g/L culture broth and 16.1 g/100 g of dry cell, respectively.

  • PDF

PURIFICATION AND PROPERTIES OF EXTRACELLULAR NUCLEASE(S) FROM RUMEN CONTENTS OF BUBALUS BUBALIS

  • Sinha, P.R.;Dutta, S.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 1990
  • Extracellular nuclease(s) in buffalo rumen fluid were purified from strained rumen fluid by a procedure involving Seitz filtration, acetone fractionation and gel filtration on Sephadex G-100. The enzyme resolved into two peaks exhibiting both DNase and RNase activities. The molecular weight of enzyme corresponding to peaks I and II were approximately 30,000 and 12,000 respectively. The properties of enzymes from the two peaks, however, were same. Optimum temperature for both DNase and RNase activities was at $50^{\circ}C$. Whereas DNase activity was stable upto $60^{\circ}C$, RNase activity was stable only up to $50^{\circ}C$. DNase activity recorded two pH optima, one at pH 5.5 and the other at pH 7.0. RNase activity recorded a broad pH optimum between pH 6.0-8.0. pH stability of the enzyme coincided with pH optima for both the activities. DNase activity was stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. RNase activity was also stimulated by $Mg^{2+}$ and $Mn^{2+}$ and inhibited by $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Hg^{2+}$ and $Ag^+$. Reducing agents stimulated both the activities.

리보핵산 관련물질을 함유한 Yeast Extracts 제조에 Streptomyces faecalis MSF 배양액의 이용

  • 임억규
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.512-519
    • /
    • 1997
  • RNA accumulating strain of Torulopsis versatilis MT-1 was cultured in molasses medium for higher contents of RNA in cell. Yeast cells were harvested at logarithmic phase on synchronous culture. Yield of cells on dry base to input sugar was 59.5%. Crude protein content was 55.1% in cell. RNA content was 13.9%. Some problems found in the process for the preparation of yeast extracts were improved by the addition of culture broth of Streptomyces faecalis MSF which secrete RNase (5' nuclease and 5' adenylic acid deaminase). When the culture broth of S. faecalis MSF was added in autolysis process 46% of RNA in cell was converted to I and G(5' inosinic acid and 5' guanylic acid) in extract. By addition of 3-7% culture broth of S.faecalis MSF in autolysis or enzymolysis process at the start or early stage, RNA in extract was converted easily to I and G and protein in cells was easily extracted and hydrolyzed to amino acid. Taste of those yeast extracts was delicious. The yeasty smell in yeast extracts was removed. And cell debris was easily removed from extract.

  • PDF

RNase Resistant RNA in the Egg of Xenopus laevis: I. RNA Extraction and in Vitro Labeling

  • Chung, Hae-Moon
    • The Korean Journal of Zoology
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 1977
  • RNA was extracted from the eggs of Xenopus laevis to do preliminary experiments before testing the possibility that if RNase resistant RNA molecules exist in the amphibian egg. Chromatography on Sephadex G-100 column indicated 3 peaks consistently. Only high molecular weight RNA species eluted in the first peak were labeled in vitro using $^{3}H$-dimethyl sulfate to eliminate the possible contribution of base paired oligonucleotides from tRNA. By this method, high specific activity could be obtained and the attached methyl groups were quite stable.

  • PDF

Secondary Structure for RNA Aptamers Binding to Guanine-Rich Sequence in the 5'-UTR RNA of N-Ras Oncogene

  • Cho, Bongrae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.121-124
    • /
    • 2021
  • RNA molecules which bind to the G-rich sequence in the 5'-UTR RNA which plays an important role in expression of N-ras, were selected. The secondary structures of five selected RNA aptamers including primer sequence were found by the CLC RNA workbench ver. 4.2 program (www.clcbio.com) and investigated with RNA structural probes such as RNase T1 which has specificity for a G in single-stranded region, RNase V1 specific for double strand and nuclease S1 specific for single strand. The generalized secondary structure model was proposed and characterized. It was composed of a central long double strand region flanked by single strand region at both end sides. The double strand region had an internal single-strand region and bulges. The single strand loop in the right side was composed of four or five nucleotides.