• 제목/요약/키워드: RNSS

검색결과 21건 처리시간 0.023초

Performance Analysis of Wide-Area Differential Positioning Based on Regional Navigation Satellite System

  • Kim, Donguk;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2021
  • The position accuracy of the stand-alone Regional Navigation Satellite System (RNSS) users is more than tens of meters because of various error sources in satellite navigation signals. This paper focuses on wide-area differential (WAD) positioning technique, which is already applied in Global Navigation Satellite System (GNSS), in order to improve the position accuracy of RNSS users. According to the simulation results in the very narrow ground network in regional area, the horizontal position error of stand-alone RNSS is about RMS 11.6 m, and that of RNSS with WAD technique, named the WAD-RNSS, is about RMS 2.5 m. The accuracy performance has improved by about 78%.

Analysis of Jamming Robustness Performance According to RNSS Signal Waveforms

  • Subin Lee;Kahee Han;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권3호
    • /
    • pp.229-236
    • /
    • 2023
  • As the importance and dependency of the positioning, navigation, and timing (PNT) information provided by the radio navigation satellite service (RNSS) increases, the vulnerability of RNSS to jamming can lead to significant risks. The signal design under the consideration of anti-jamming performance helps to provide service which is robust to jamming environment. Therefore, it is necessary to evaluate the jamming robustness performance during the design of new signals. In this paper, we introduce figures-of-merit (FoMs) that can be used for an anti-jamming performance analysis of designed signals of interest. We then calculate the FoMs, such as the quality factor (Q factor), tolerable jamming-to-signal ratio (tolerable J/S), and range to jammer (d) for legacy RNSS signals and analyze the results. Finally, based on the results of the analysis, we derive waveform design conditions to obtain good anti-jamming performance. As a result, this paper shows that the waveforms with wide bandwidth leading to good spectral efficiency provide strong anti-jamming performance.

Development of MATLAB-based Signal Performance Analysis Software for New RNSS Signal Design

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권4호
    • /
    • pp.139-152
    • /
    • 2019
  • The design of new navigation signals is a key factor in building new satellite navigation systems and/or modernizing existing legacy systems. Navigation signal design involves selecting candidate groups and evaluating and analyzing their signal performances. This process can be easily performed through software simulation especially at the beginning of the development phase. The analytical signal performance analysis software introduced in this study is implemented based on equations between the signal design parameters of Radio Navigation Satellite Service (RNSS) and the navigation signal figures-of-merit (FoMs). Therefore, this study briefly summarizes the RNSS signal design parameters and FoMs before introducing the developed software. After that, we explain the operating sequence of the implemented software including the Graphical User Interface (GUI), and calculate the FoMs of an example scenario to verify the feasibility of the software operations.

Investigation on Figures-of-Merit of Signal Performance for Next Generation RNSS Signal Design

  • Han, Kahee;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.191-205
    • /
    • 2020
  • Designing a new signal is essential in the development of a new Radio Navigation Satellite Service (RNSS) system. This paper introduces the signal design parameters and the figures of merit (FoMs) to be considered in designing a new RNSS signal, and then reviews their relationship in details. In addition, we show examples of the trade-off analysis between FoMs according to the signal design scenarios using an analytical simulation tool based on the relationship between the signal design parameters and the FoMs.

한국형 위성항법시스템을 위한 위성군집궤도 최적 설계 (Optimal Satellite Constellation Design for Korean Navigation Satellite System)

  • 김한별;김흥섭
    • 산업경영시스템학회지
    • /
    • 제39권3호
    • /
    • pp.1-9
    • /
    • 2016
  • NSS (Navigation satellite system) provides the information for determining the position, velocity and time of users in real time using satellite-networking, and is classified into GNSS (Global NSS) and RNSS (Regional NSS). Although GNSS services for global users, the exactitude of provided information is dissatisfied with the degree required in modern systems such as unmanned system, autonomous navigation system for aircraft, ship and others, air-traffic control system. Especially, due to concern about the monopoly status of the countries operating it, some other countries have already considered establishing RNSS. The RNSS services for users within a specific area, however, it not only gives more precise information than those from GNSS, but also can be operated independently from the NSS of other countries. Thus, for Korean RNSS, this paper suggests the methodology to design the satellite constellation considering the regional features of Korean Peninsula. It intends to determine the orbits and the arrangement of navigation satellites for minimizing PDOP (Position dilution of precision). PGA (Parallel Genetic Algorithm) geared to solve this nonlinear optimization problem is proposed and STK (System tool kit) software is used for simulating their space flight. The PGA is composed of several GAs and iterates the process that they search the solution for a problem during the pre-specified generations, and then mutually exchange the superior solutions investigated by each GA. Numerical experiments were performed with increasing from four to seven satellites for Korean RNSS. When the RNSS was established by seven satellites, the time ratio that PDOP was measured to less than 5 (i.e. better than 'Good' level on the meaning of the PDOP value) was found to 94.3% and PDOP was always kept at 10 or less (i.e. better than 'Moderate' level).

Design and Implementation of SDR-based Multi-Constellation Multi-Frequency Real-Time A-GNSS Receiver Utilizing GPGPU

  • Yoo, Won Jae;Kim, Lawoo;Lee, Yu Dam;Lee, Taek Geun;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.315-333
    • /
    • 2021
  • Due to the Global Navigation Satellite System (GNSS) modernization, recently launched GNSS satellites transmit signals at various frequency bands such as L1, L2 and L5. Considering the Korean Positioning System (KPS) signal and other GNSS augmentation signals in the future, there is a high probability of applying more complex communication techniques to the new GNSS signals. For the reason, GNSS receivers based on flexible Software Defined Radio (SDR) concept needs to be developed to evaluate various experimental communication techniques by accessing each signal processing module in detail. This paper proposes a novel SDR-based A-GNSS receiver capable of processing multi-GNSS/RNSS signals at multi-frequency bands. Due to the modular structure, the proposed receiver has high flexibility and expandability. For real-time implementation, A-GNSS server software is designed to provide immediate delivery of satellite ephemeris data on demand. Due to the sampling bandwidth limitation of RF front-ends, multiple SDRs are considered to process the multi-GNSS/RNSS multi-frequency signals simultaneously. To avoid the overflow problem of sampled RF data, an efficient memory buffer management strategy was considered. To collect and process the multi-GNSS/RNSS multi-frequency signals in real-time, the proposed SDR A-GNSS receiver utilizes multiple threads implemented on a CPU and multiple NVIDIA CUDA GPGPUs for parallel processing. To evaluate the performance of the proposed SDR A-GNSS receiver, several experiments were performed with field collected data. By the experiments, it was shown that A-GNSS requirements can be satisfied sufficiently utilizing only milliseconds samples. The continuous signal tracking performance was also confirmed with the hundreds of milliseconds data for multi-GNSS/RNSS multi-frequency signals and with the ten-seconds data for multi-GNSS/RNSS single-frequency signals.

지역 위성항법시스템 항법메시지 및 광역 보정정보 성능 분석을 위한 MATLAB GUI 기반 소프트웨어 개발 (Development of MATLAB GUI-based Software for Performance Analysis of RNSS Navigation Message and WAD-RNSS Correction)

  • 박재욱;김부겸;기창돈;김동욱
    • 한국항행학회논문지
    • /
    • 제27권5호
    • /
    • pp.510-518
    • /
    • 2023
  • 본 논문에서는 지역 위성항법시스템의 항법메시지와 광역 보정정보 성능 분석을 위해 MATLAB GUI (graphic user interface) 기반으로 개발된 소프트웨어에 대해 소개한다. 본 소프트웨어는 한반도 및 주변 지역에 서비스를 제공하는 가상의 지역 위성항법시스템의 감시국 및 기준국 배치에 따른 항법메시지와 광역 보정정보의 위성 궤도/시각 관련 성능을 분석하기 위해 개발되었다. 본 소프트웨어 구동 시 항법메시지 및 광역 보정정보가 MATLAB 파일 형식으로 출력된다. 개발된 소프트웨어의 출력을 검증한 결과, 궤도 및 시계 예측 오차가 통계적 예측에 부합하며, 파라미터 피팅 오차가 cm 수준임을 확인하였다. 또한, 광역 보정정보가 측정치 차원의 오차를 81.9% 개선함을 확인하여 유효한 항법메시지 및 광역 보정정보 성능 분석이 가능함을 확인하였다.

차세대 RNSS 감시국을 위한 고장 검출 알고리즘 개발 방안 (Development Approach of Fault Detection Algorithm for RNSS Monitoring Station)

  • 정다님;이수민;이찬희;김의호;최헌호
    • 한국항행학회논문지
    • /
    • 제28권1호
    • /
    • pp.1-14
    • /
    • 2024
  • 위치, 항법 및 시각정보 서비스를 제공하는 위성항법시스템은 위성시스템, 지상시스템, 사용자시스템으로 구성된다. 지상시스템의 구성요소인 감시국은 위성항법시스템의 서비스 제공 및 고장 검출을 위해, 위성항법 신호를 연속적으로 수집하고 위성의 SIS (signal-in-space) 고장과 수신기 및 다중반사파를 포함한 Local 고장과 같은 신호 이상을 검출하여 수신한 데이터와 검출 결과를 중앙처리국으로 전송하는 역할을 한다. 본 논문에서는 기존 위성항법시스템 감시국의 수신한 위성 신호에 대한 품질 판단 및 고장 검출을 위한 주요 모니터와 측정치 전처리 과정을 소개하고, 이를 활용하여 차세대 지역 위성항법시스템 (RNSS; regional navigation satellite system) 감시국의 구성요소와 아키텍처 및 알고리즘 개발 방안을 제시하였다.

Performance Analysis for Secured Service Signals of RNSS Systems

  • Han, Kahee;Lee, Subin;Lee, Kihoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.341-349
    • /
    • 2022
  • When designing a new RNSS signal, the performance analysis for the legacy signal providing the same service, is required to determine the performance requirements. However, there are few studies on the secured service (SS) signal performance analysis, and the waveform is the only published information on the signal design component of the SS signal. Therefore, in this paper, we introduce several figures-of-merit (FoMs) that can be used for performance analysis in terms of the waveform. And then, we calculate the FoMs, such as autocorrelation main peak to secondary peak ratio (AMSR), spectral efficiency, Gabor bandwidth, multipath error, and jamming resistance quality factor, for the existing SS signals and discuss the analysis results. Finally, we conclude that the superior waveform for each FoM is different, and that the consideration of the trade-off relationship between the FoMs is required for waveform design.