• Title/Summary/Keyword: RNA-protein interactions

Search Result 110, Processing Time 0.024 seconds

Network Analyses of Gene Expression following Fascin Knockdown in Esophageal Squamous Cell Carcinoma Cells

  • Du, Ze-Peng;Wu, Bing-Li;Xie, Jian-Jun;Lin, Xuan-Hao;Qiu, Xiao-Yang;Zhan, Xiao-Fen;Wang, Shao-Hong;Shen, Jin-Hui;Li, En-Min;Xu, Li-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5445-5451
    • /
    • 2015
  • Fascin-1 (FSCN1) is an actin-bundling protein that induces cell membrane protrusions, increases cell motility, and is overexpressed in various human epithelial cancers, including esophageal squamous cell carcinoma (ESCC). We analyzed various protein-protein interactions (PPI) of differentially-expressed genes (DEGs), in fascin knockdown ESCC cells, to explore the role of fascin overexpression. The node-degree distributions indicated these PPI sub-networks to be characterized as scale-free. Subcellular localization analysis revealed DEGs to interact with other proteins directly or indirectly, distributed in multiple layers of extracellular membrane-cytoskeleton/ cytoplasm-nucleus. The functional annotation map revealed hundreds of significant gene ontology (GO) terms, especially those associated with cytoskeleton organization of FSCN1. The Random Walk with Restart algorithm was applied to identify the prioritizations of these DEGs when considering their relationship with FSCN1. These analyses based on PPI network have greatly expanded our comprehension of the mRNA expression profile following fascin knockdown to future examine the roles and mechanisms of fascin action.

Arabidopsis SHL1 protein binds to a specific sequence of the TCH4 promoter in vitro (애기장대 SHL1 단백질의 TCH4 프로모터의 특정 염기 서열 결합에 관한 연구)

  • Lee, Ji Hyea;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.71-76
    • /
    • 2018
  • The Arabidopsis SHL1 (${\underline{Sh}}ort$ ${\underline{L}}ife$ 1) gene encodes a small nuclear protein that is critical for the proper expression of the developmental programs that are responsible for controlling plant stature, senescence, flowering and seed formation. The SHL1 contains a single PHD finger domain that works in conjunction with a bromo-adjacent homology (BAH) motif that is thought to function significantly in protein-protein interactions. The TCH4 gene of the Arabidopsis encodes a xylogluclan endotransglucosylase/hydrolase that is transcriptionally regulated by a variety of hormonal and environmental stimuli. We report here in this study that the SHL1 exhibits sequence specific DNA binding properties, recognizing a 14 bp region of the TCH4 promoter in vitro, spanning nucleotides -262 to -275 (GGAAAAAACTCCCA). Chiefly, the nuclear extracts of Arabidopsis contain a protein with similar binding properties as recombinant SHL1, which is absent in identified transgenic plants that are noted as expressing antisense SHL1 RNA. Interestingly, the SHL1 gene expression with a BL treatment in characteristically wild types of seedlings showed that the transcript level of SHL1 is significantly down regulated by the BL treatment. The SHL1 may play a subtle role in regulating the kinetics of induction of the TCH4 in response to several stimuli in vivo.

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

Elastic Network Model for Nano and Bio System Analysis (나노 및 바이오 시스템 해석을 위한 탄성네트워크모델)

  • Kim, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.668-669
    • /
    • 2008
  • In this paper, we introduce various coarse-grained elastic network modeling (ENM) techniques as a novel computational method for simulating atomic scale dynamics in macromolecules including DNA, RNA, protein, and polymer. In ENM, a system is modeled as a spring network among representative atoms in which each linear elastic spring is well designed to replace both bonded and nonbonded interactions among atoms in the sense of quantum mechanics. Based on this simplified system, a harmonic Hookean potential is defined and used for not only calculating intrinsic vibration modes of a given system, but also predicting its anharmonic conformational change, both of which are strongly related with its functional features. Various nano and bio applications of ENM such as fracture mechanics of nanocomposite and protein dynamics show that ENM is one of promising tools for simulating atomic scale dynamics in a more effective and efficient way comparing to the traditional molecular dynamics simulation.

  • PDF

Pathway Analysis in HEK 293T Cells Overexpressing HIV-1 Tat and Nucleocapsid

  • Lee, Min-Joo;Park, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1103-1108
    • /
    • 2009
  • The human immunodeficiency virus (HIV)-l protein Tat acts as a transcription transactivator that stimulates expression of the infected viral genome. It is released from infected cells and can similarly affect neighboring cells. The nucleocapsid is an important protein that has a related significant role in early mRNA expression, and which contributes to the rapid viral replication that occurs during HIV-1 infection. To investigate the interaction between the Tat and nucleocapsid proteins, we utilized cDNA micro arrays using pTat and flag NC cotransfection in HEK 293T cells and reverse transcription-polymerase chain reaction to validate the micro array data. Four upregulated genes and nine downregulated genes were selected as candidate genes. Gene ontology analysis was conducted to define the biological process of the input genes. A proteomic approach using PathwayStudio determined the relationship between Tat and nucleocapsid; two automatically built pathways represented the interactions between the upregulated and downregulated genes. The results indicate that the up- and downregulated genes regulate HIV-1 replication and proliferation, and viral entry.

Interactions between Filamin A and MMP-9 Regulate Proliferation and Invasion in Renal Cell Carcinoma

  • Sun, Guo-Gui;Wei, Cui-Da;Jing, Shao-Wu;Hu, Wan-Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3789-3795
    • /
    • 2014
  • This study aimed to analyze the expression, clinical significance of filamin A (FLNA) in renal cell carcinoma (RCC) and biological effects in a cell line by regulating FLNA expression. Immunohistochemistry and Western blotting were used to analyze FLNA protein expression in 70 cases of RCC and normal tissues to study the relationship with clinical factors. FLNA lentiviral and empty vectors were transfected into RCC to study the influence of up-regulated expression of FLNA. FLNA siRNA was transiently transfected into ACHN kidney carcinoma cells by a liposome-mediated method and protein was detected by Western blotting. The level of expression was found to be significantly lower in RCC than normal tissues (p<0.05). No correlation was noted with gender, age, tumor size or pathological types (p>0.05), but links with lymph node metastasis, clinic stage and histological grade were noted (p<0.05). Loss of FLNA expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (p<0.05). Results for biological function showed that ACHN cells transfected with FLNA had a lower survival fraction, significant decrease in migration and invasion, higher cell apoptosis, higher percentage of the G0/G1 phases, and lower MMP-9 protein expression compared with ACHN cells untransfected with FLNA (p<0.05). However, renal 786-0 cells transfected with FLNA siRNA had a higher survival fraction, significant increase in migration and invasion, and higher MMP-9 protein expression compared (p<0.05). In conclusion, FLNA expression was decreased in RCC and correlated significantly with lymph node metastasis, clinic stage, histological grade and poor overall survival, suggesting that FLNA may play important roles as a a tumor suppressor in RCC by promoting degradation of MMP-9.

Label-free Detection of the Transcription Initiation Factor Assembly and Specific Inhibition by Aptamers

  • Ren, Shuo;Jiang, Yuanyuan;Yoon, Hye Rim;Hong, Sun Woo;Shin, Donghyuk;Lee, Sangho;Lee, Dong-Ki;Jin, Moonsoo M.;Min, Irene M.;Kim, Soyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1279-1284
    • /
    • 2014
  • The binding of TATA-binding protein (TBP) to the TATA-box containing promoter region is aided by many other transcriptional factors including TFIIA and TFIIB. The mechanistic insight into the assembly of RNA polymerase II preinitation complex (PIC) has been gained by either directly altering a function of target protein or perturbing molecular interactions using drugs, RNAi, or aptamers. Aptamers have been found particularly useful for studying a role of a subset of PIC on transcription for their ability to inhibit specific molecular interactions. One major hurdle to the wide use of aptamers as specific inhibitors arises from the difficulty with traditional assays to validate and determine specificity, affinity, and binding epitopes for aptamers against targets. Here, using a technique called the bio-layer interferometry (BLI) designed for a label-free, real-time, and multiplexed detection of molecular interactions, we studied the assembly of a subset of PIC, TBP binding to TATA DNA, and two distinct classes of aptamers against TPB in regard to their ability to inhibit TBP binding to TFIIA or TATA DNA. Using BLI, we measured not only equilibrium binding constants ($K_D$), which were overall in close agreement with those obtained by electrophoretic mobility shift assay, but also kinetic constants of binding ($k_{on}$ and $k_{off}$), differentiating aptamers of comparable KDs by their difference in binding kinetics. The assay developed in this study can readily be adopted for high throughput validation of candidate aptamers for specificity, affinity, and epitopes, providing both equilibrium and kinetic information for aptamer interaction with targets.

Metabolic Interactions of Cannabinoids with Steroid Hormones

  • Watanabe, Kazuhito
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.57-64
    • /
    • 2007
  • Metabolic interactions of the three major cannabinoids, ${\Delta}^9$-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) with steroid hormones were investigated. These cannabioids concentration-dependently inhibited $3{\beta}$-hydroxysteroid dehydrogenase and $17{\alpha}$-hydroxylase in rat adrenal and testis microsomes. CBD and CBN were the most potent inhibitors of $3{\beta}$-phydroxysteroid dehydrogenase and progesterone $17{\alpha}$-hydroxylase, respectively, in rat testis microsomes. Three cannabinoids highly attenuated hCG-stimulated testosterone production in rat testicular interstitial cells. These cannabinoids also decreased in levels of mRNA and protein of StAR in the rat testis cells. These results indicate that the cannabinoids could interact with steroid hormones, and exert their modulatory effects on endocrine and testicular functions. Metabolic interaction of a THC metabolite, $7{\beta}$-hydroxy-${\Delta}^8$-THC with steroids is also investigated. Monkey liver microsomes catalyzed the stereoselective oxidation of $7{\beta}$-hydroxy-${\Delta}^8$-THC to 7-oxo-${\Delta}^8$-THC, so-called microsomal alcohol oxygenase (MALCO). The reaction is catalyzed by CYP3A8 in the monkey liver microsomes, and required NADH as well as NADPH as an efficient cofactor, and its activity is stimulated by some steroids such as testosterone and progesterone. Kinetic analyses revealed that MALCO-catalyze reaction showed positive cooperativity. In order to explain the metabolic interaction between the cannabinoid metabolite and testosterone, we propose a novel kinetic model involving at least three binding sites for mechanism of the metabolic interactions.

  • PDF

Soybean mosaic virus Infection and Helper Component-protease Enhance Accumulation of Bean pod mottle virus-Specific siRNAs

  • Lim, Hyoun-Sub;Jang, Chan-Yong;Bae, Han-Hong;Kim, Joon-Ki;Lee, Cheol-Ho;Hong, Jin-Sung;Ju, Ho-Jong;Kim, Hong-Gi;Domier, Leslie L.
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.315-323
    • /
    • 2011
  • Soybean plants infected with Bean pod mottle virus (BPMV) develop acute symptoms that usually decrease in severity over time. In other plant-virus interactions, this type of symptom recovery has been associated with degradation of viral RNAs by RNA silencing, which is accompanied by the accumulation of virus-derived small interfering RNAs (siRNAs). In this study, changes in the accumulation of BPMV siRNAs were investigated in soybean plants infected with BPMV alone, or infected with both BPMV and Soybean mosaic virus (SMV) and in transgenic soybean plants expressing SMV helper component-protease (HC-Pro). In many potyviruses, HC-Pro is a potent suppressor of RNA silencing. In plants infected with BPMV alone, accumulation of siRNAs was positively correlated with symptom severity and accumulation of BPMV genomic RNAs. Plants infected with both BPMV and SMV and BPMV-infected transgenic soybean plants expressing SMV HC-Pro exhibited severe symptoms characteristic of BPMVSMV synergism, and showed enhanced accumulation of BPMV RNAs and siRNAs compared to plants infected with BPMV alone and nontransgenic plants. Likewise, SMV HC-Pro enhanced the accumulation of siRNAs produced from a silenced green fluorescent protein gene in transient expression assays, while the P19 silencing suppressor of Tomato bushy stunt virus did not. Consistent with the modes of action of HC-Pro in other systems, which have shown that HC-Pro suppresses RNA silencing by preventing the unwinding of duplex siRNAs and inhibiting siRNA methylation, these studies showed that SMV HC-Pro interfered with the activities of RNA-induced silencing complexes, but not the activities of Dicer-like enzymes in antiviral defenses.

Characterization of the molecular and biological properties between the equine herpesvirus type 1 immediate-early protein and the general transcription factor human TFIIB

  • Jang Hyung-Kwan
    • Korean Journal of Veterinary Service
    • /
    • v.27 no.4
    • /
    • pp.355-369
    • /
    • 2004
  • The equine herpesvirus type 1 (EHV-1) immediate-early (IE) protein is a potent transactivator responsible for the activation of both early and late genes during the course of infection and is comprised of discrete functional domains that mediate its many functions. Interaction between trans activators such as the IE protein and various components of the RNA polymerase II transcription initiation machinery has been demonstrated to be critical for transactivation. In the present report, it is addressed the hypothesis that the IE protein interacts with various components of transcription machinery to mediate transactivation of target viral genes. In these studies, it is demonstrated that in vitro transcribed and translated IE protein interacts with TFIIB-agarose conjugate but not with TFIID-agarose conjugate. Additional immunoprecipitation studies using nuclear extracts derived from EHV-1 infected RK-13 cells confirmed that the IE protein interacts strongly with TFIIB, but fails to interact with TFIID. IR2, a truncated form of the IE protein lacking the potent transactivation domain and involved in the down-regulation of the IE gene, also interacted with TFIIB but not with TFIID. Studies were also performed to ascertain if particular TBP-associated factors (TAFs) could mediate IE or IR2 binding to TFIID. In vitro transcribed and translated TAF250 added to nuclear extracts generated from EHV-1 infected cells also failed to mediate an interaction between the IE protein or the IR2 protein and TFIID. This study demonstrated that the IE protein mediates transactivation of target viral genes by a mechanism that involves TFIIB. This is in contrast to mechanisms that have been proposed for both the herpes simplex virus ICP4 and VP16 protein which have been proposed to transactivate viral genes through interactions involving both TFIIB and TFIID. This study also intimates that IR2 mediate its repressive effects during the course of EHV-1 infection by a mechanism that involves sequestration of various transcription factors.