• Title/Summary/Keyword: RNA-dependent RNA polymerase

Search Result 223, Processing Time 0.03 seconds

New Antisense RNA Systems Targeted Against Plant Pathogens

  • Matousek, J.;Vrba, L.;Kuchar, M.;Pavingerova, D.;Orctova, L.;Ptacek, J.;Schubert, J.;Steger, G.;Beier, H.;Riesner, D.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.379-385
    • /
    • 2000
  • tRNA and 7SL RNA based antisense vehicles were prepared by inserting conserved anti-viral and anti-viroid domains. Anti-PVS coat protein leader sequence (ACPL) and antistructural antihairpin domain of PSTVd (AHII) were inserted in tRNA cassette; anti- zing finger domain of PVS, AHII and anti hop latent viroid ribozyme were inserted in 7SL RNA gene isolated from A. thaliana. These constructs were shown to be transcribed both, in in vitro and in in vivo conditions. However, it followed from our work that closely linked position of PoIII reference genes and PoIIII antisense genes within T-DNA lead to the impairment of RNA expression in transgenic plants. To assay in vivo transcription of antisense genes, hairy root potato cultures were established using h. tumefaciens A4-24 bearing both, Ri plasmid and PoIII-promoterless plant expression vectors with antisense RNA genes. Expression of antisense RNA in transgenic potato tissues was proven by specific RT-PCR reactions.

  • PDF

Occurrence of dsRNA Mycovirus (LeV-FMRI0339) in the Edible Mushroom Lentinula edodes and Meiotic Stability of LeV-FMRI0339 among Monokaryotic Progeny

  • Kim, Jung-Mi;Yun, Suk-Hyun;Park, Seung-Moon;Ko, Han-Gyu;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.460-464
    • /
    • 2013
  • dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV), and sequence comparison of the cloned amplicon showed identical sequences sequence to known RNA-dependent RNA polymerase genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny.

RNA silencing-mediated resistance is related to biotic / abiotic stresses and cellular RdRp expression in transgenic tobacco plants

  • Wu, Xiao-Liang;Hou, Wen-Cui;Wang, Mei-Mei;Zhu, Xiao-Ping;Li, Fang;Zhang, Jie-Dao;Li, Xin-Zheng;Guo, Xing-Qi
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.376-381
    • /
    • 2008
  • The discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene. Moreover, RNA silencing and the associated resistance were differently inhibited by potato virus X (PVX) and tobacco mosaic virus (TMV) infections. The increased expression of NtRdRP1 in both PVX and TMV infected plants indicated its general role in response to viral pathogens. Collectively, we propose that biotic and abiotic stress factors affect RNA silencing-mediated resistance in transgenic tobacco plants and that their effects target different steps of RNA silencing.

HBV Polymerase Residues $Asp^{429}$ and $Asp^{551}$, Invariant at Motifs A and C are Essential to DNA Binding

  • Kim, Youn-Hee;Hong, Young-Bin;Jung, Gu-Hung
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.498-502
    • /
    • 1998
  • HBV polymerase shares several regions of amino acid homology with other DNA-directed and RNA-directed polymerases. The amino acid residues $Asp^{429}$, $Gly^{518}$, $Asp^{551}$, $Lys^{585}$, and $Gly^{641}$ in the conserved motifs A, B', C, D, and E in the polymerase domain of HBV polymerase were mutated to alanine or histidine by in vitro site-directed mutagenesis. Those mutants were overexpressed, purified, and analyzed against DNA-dependent DNA polymerase activity and affinity for DNA binding. All those mutants did not show DNA-dependent DNA polymerase activities indicating that those five amino acid residues are all critical in DNA polymerase activity. South-Western analysis shows that amino acid residues $ASp^{429}$ and $ASp^{551}$ are essential to DNA binding, and $Gly^{318}$ and $Gly^{585}$ also affect DNA binding to a certain extent.

  • PDF

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF

Complete genome sequence of Fusarium hypovirus DK2l strain and genomic diversity of dsRNA mycoviruses isolated from Fusarium graminearum

  • Lim, Won-Seok;Chu, Yeon-Mee;Lee, Yin-Won;Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.117.3-118
    • /
    • 2003
  • We tested for the presence of double-stranded RNA (dsRNA) mycovirus in 827 Fusarium graminearum isolated from diseased barley and maize. dsRNA mycoviruses with various sizes were isolated. Of them, it was previously reported that dsRNA from DK2l isolate had pronounced morphological changes, including reduction in mycelial growth, increased to red pigmentation, reduced virulence and sporulation. (Chu et al., Appl. Environ. Microbiol. 2002). For better understanding of this hypovirulence associated with DK2l dsRNA virus, we determined the complete nucleotide sequence of dsRNA genome and named Fusarium hypovirus DK2l strain (Fhv-DK2l ). Genomic RNA of Fhv-DK2l was determined to be 6625 nucleotides in length excluding the poly (A) tail and contained three putative open reading frame. RNA-dependent RNA polymerase (RdRp) and helicase domain were expected in ORF A, 54 to 4709 nucleotide position. ORE B, 4752 to 5216 nucleotide position, and ORF C, 5475 to 6578 nucleotide position, were predicted to encode 16.7kDa and 41.3kDa protein respectively each. We could not detect any conserved domains from these two proteins. Phylogenetic analysis showed Fhv-DK2l was related to Cryphonectria hypovirus 3. Ten additional isolates were found that were infected with dsRNA mycoviruses. These mycoviruses contain 2 to 4 different segments of dsRNAs with the size range of approximately 1.7 to 10-kbp in length. The presence of dsRNAs isolates did not affect colony morphology and were transmissible through conidia and ascospore with incidence of 30-100%. These results indicate that there is genomic diversity of dsRNA mycoviruses that infect F. graminearum isolates and that impact of virus infection on host's morphology and virulence is determined by the interaction between dsRNAs and the fungal host, not by the mere presence of the dsRNAs

  • PDF

Spike protein D614G and RdRp P323L: the SARS-CoV-2 mutations associated with severity of COVID-19

  • Biswas, Subrata K.;Mudi, Sonchita R.
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.44.1-44.7
    • /
    • 2020
  • The severity of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), greatly varies from patient to patient. In the present study, we explored and compared mutation profiles of SARS-CoV-2 isolated from mildly affected and severely affected COVID-19 patients in order to explore any relationship between mutation profile and disease severity. Genomic sequences of SARS-CoV-2 were downloaded from Global Initiative on Sharing Avian Influenza Data (GISAID) database. With the help of Genome Detective Coronavirus Typing Tool, genomic sequences were aligned with the Wuhan seafood market pneumonia virus reference sequence and all the mutations were identified. Distribution of mutant variants was then compared between mildly and severely affected groups. Among the numerous mutations detected, 14408C>T and 23403A>G mutations resulting in RNA-dependent RNA polymerase (RdRp) P323L and spike protein D614G mutations, respectively, were found predominantly in severely affected group (>82%) compared with mildly affected group (<46%, p < 0.001). The 241C>T mutation in the non-coding region of the genome was also found predominantly in severely affected group (p < 0.001). The 3037C>T, a silent mutation, also appeared in relatively high frequency in severely affected group compared with mildly affected group, but the difference was not statistically significant (p = 0.06). We concluded that spike protein D614G and RdRp P323L mutations in SARS-CoV-2 are associated with severity of COVID-19. Further studies will be required to explore whether these mutations have any impact on the severity of disease.

Molecular Characterization of Fusarium Graminearum Virus 2 Isolated from Fusarium graminearum Strain 98-8-60

  • Yu, Ji-Suk;Lee, Kyung-Mi;Son, Moon-Il;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.285-290
    • /
    • 2011
  • Fusarium graminearum virus 2 (FgV2) infects Fusarium graminearum strain 98-8-60 and has at least five segments of double-stranded RNAs (dsRNAs), denoted as dsRNA-1 to dsRNA-5. In this study, the genome of FgV2 was sequenced and its phylogenetic relationship with other mycoviruses was analyzed. The lengths of FgV2 dsRNAs 1-5 ranged from 2414 to 3580 base pairs (bp). The 5' and 3' untranslated regions (UTRs) are highly conserved, and each dsRNA segment had 78-105 and 84-306 bp of 5' and 3' UTRs, respectively. Each dsRNA segment contained a single open reading frame (ORF). Computer analysis of dsRNA-1 revealed a putative open reading frame (ORF) that shows high sequence identity with an RNA-dependent RNA polymerase (RdRp) containing eight conserved motifs. dsRNAs 2-5 also each contain one putative ORF coding for products of unknown function. The sequences of FgV2 dsRNA-2 and dsRNA-3 have significant sequence identity with Magnaporthe oryzae chrysovirus 1 (MoCV1) dsRNA-3 and -4, respectively. When compared to other dsRNA mycoviruses in a phylogenetic analysis of the putative RdRp protein, FgV2 was found to form a distinct virus clade with Aspergillus mycovirus 1816 and MoCV1 in the family Chrysoviridae.

Role of RNA Polymerase II Carboxy Terminal Domain Phosphorylation in DNA Damage Response

  • Jeong Su-Jin;Kim Hye-Jin;Yang Yong-Jin;Seol Ja-Hwan;Jung Bo-Young;Han Jeong-Whan;Lee Hyang-Woo;Cho Eun-Jung
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.516-522
    • /
    • 2005
  • The phosphorylation of C-terminal domain (CTD) of Rpb1p, the largest subunit of RNA polymerase II plays an important role in transcription and the coupling of various cellular events to transcription. In this study, its role in DNA damage response is closely examined in Saccharomyces cerevisiae, focusing specifically on several transcription factors that mediate or respond to the phosphorylation of the CTD. CTDK-1, the pol II CTD kinase, FCP1, the CTD phosphatase, ESS1, the CTD phosphorylation dependent cis-trans isomerase, and RSP5, the phosphorylation dependent pol II ubiquitinating enzyme, were chosen for the study. We determined that the CTD phosphorylation of CTD, which occurred predominantly at serine 2 within a heptapeptide repeat, was enhanced in response to a variety of sources of DNA damage. This modification was shown to be mediated by CTDK-1. Although mutations in ESS1 or FCP1 caused cells to become quite sensitive to DNA damage, the characteristic pattern of CTD phosphorylation remained unaltered, thereby implying that ESS1 and FCP1 play roles downstream of CTD phosphorylation in response to DNA damage. Our data suggest that the location or extent of CTD phosphorylation might be altered in response to DNA damage, and that the modified CTD, ESS1, and FCP1 all contribute to cellular survival in such conditions.