• 제목/요약/키워드: RNA-dependent RNA polymerase

검색결과 222건 처리시간 0.023초

Interaction of Stomatin with Hepatitis C Virus RNA Polymerase Stabilizes the Viral RNA Replicase Complexes on Detergent-Resistant Membranes

  • Kim, Jung-Hee;Rhee, Jin-Kyu;Ahn, Dae-Gyun;Kim, Kwang Pyo;Oh, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권12호
    • /
    • pp.1744-1754
    • /
    • 2014
  • The hepatitis C virus (HCV) RNA genome is replicated by an RNA replicase complex (RC) consisting of cellular proteins and viral nonstructural (NS) proteins, including NS5B, an RNA-dependent RNA polymerase (RdRp) and key enzyme for viral RNA genome replication. The HCV RC is known to be associated with an intracellular membrane structure, but the cellular components of the RC and their roles in the formation of the HCV RC have not been well characterized. In this study, we took a proteomic approach to identify stomatin, a member of the integral proteins of lipid rafts, as a cellular protein interacting with HCV NS5B. Co-immunoprecipitation and co-localization studies confirmed the interaction between stomatin and NS5B. We demonstrated that the subcellular fraction containing viral NS proteins and stomatin displays RdRp activity. Membrane flotation assays with the HCV genome replication-competent subcellular fraction revealed that the HCV RdRp and stomatin are associated with the lipid raft-like domain of membranous structures. Stomatin silencing by RNA interference led to the release of NS5B from the detergent-resistant membrane, thereby inhibiting HCV replication in both HCV subgenomic replicon-harboring cells and HCV-infected cells. Our results identify stomatin as a cellular protein that plays a role in the formation of an enzymatically active HCV RC on a detergent-resistant membrane structure.

Purification and Characterization of Recombinant Hepatitis C Virus Replicase

  • Park, Chan-Hee;Kee, Young-Hoon;Lee, Jong-Ho;Oh, Jang-Hyun;Park, Jung-Chan;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.881-884
    • /
    • 1999
  • The gene encoding the RNA-dependent RNA polymerase of the hepatitis C virus was cloned and expressed with a C-terminal hexahistidine tag. The protein was purified from Escherichia coli to near homogeneity and characterized in vitro. When the 21 amino acids from the C-terminus of the protein were deleted, an inclusion body was not formed and a better purification yield was achieved. However, the activity of the purified enzyme decreased compared to that of the full length protein. The purified enzyme did exhibit ribonucleotide-incorporation activity on an in vitro transcribed RNA containing the 3' end of the HCV genome. It also possessed ribonucleotide incorporation activity, to a lesser extent, on in vitro transcribed foreign RNA templates when RNA or DNA primers were present. The activity was higher with DNA primers than with RNA primers. Accordingly, this assay system will facilitate the screening of inhibitors for hepatitis C virus replication.

  • PDF

Full-Length cDNA Cloning and Nucleotide Sequence Analysis of Cucumber Mosaic Virus (Strain Kor) RNA2

  • Kwon, Chang-Seob;Park, Kyung-Hee;Chung, Won-Il
    • Journal of Plant Biology
    • /
    • 제39권4호
    • /
    • pp.265-271
    • /
    • 1996
  • Full-length cDNA for RNA2 of cucumber mosaic virus strian Kor (Kor-CMV) was cloned downstream of synthetic T7 promoter by reverse transcriptase-polymerase chain reaction (RT-PCR). The clone could generate a full-length transcript corresponding to RNA1 in size when synthesized by T7 RNA polymerase. The complete nucleotide sequence has shown that the RNA2 is composed of 3,049 nucleotides and contains one functional open reading frame (ORF) of 2,574 nucleotides encoding 2a protein. The deduced translation product of the 2,574 nucleotides contains GDD motif which is a characteristic of RNA-dependent RNA polymerase (RdRp). The amino acid sequence analysis of the 2a protein has shown that the homology is found in decreasing order with O-CMV (98.8%), Y-CMV (98.7%), Fny-CMV (98.3%), KCMV (94.9%), Ix-CMV (91.9%), and Q-CMV (74.9%). Kor-CMV is suggested to belong to subgroup Ⅰ in the aspect of nucleotide sequence homology of RNA2.

  • PDF

한국에 산재하는 사람 Caliciviruses의 다양한 유전자군: 1987-1994년 (Genotypic Variations among Human Caliciviruses in Korea: 1987-1994)

  • 남기범;김지애;양재명;김경희
    • 대한바이러스학회지
    • /
    • 제27권2호
    • /
    • pp.185-195
    • /
    • 1997
  • Sequence comparison of the RNA-dependent RNA polymerase of human caliciviruses (HuCVs) from Korean children with gastroenteritis revealed significant genetic variation among them. cDNA clones were produced from the HuCVs collected from pediatric population during a period of 1987-1994. The application of reverse transcription-polymerase chain reaction (RT-PCR) using primers directed to the RNA-dependent RNA polymerase region within ORF1 of Norwalk virus (NV) showed that 13.7% of HuCVs yielded PCR products of similar size to the NV prototype, NV8FIIa/68/US, with exceptions of HuCV 185/87/Korea and HuCV 1115/90/Korea. Computer analyses showed that the PCR products had a continuous protein encoding frame on the positive strand, and contained GLPSG and YGDD amino acid motifs at the predicted distance from primers. Alignment of the amino acid sequences of HuCVs with previously published sequences for Snow Mountain agent (SMA), NV, and Sapporo/82/Japan indicated that these strains can be divided into four major genogroups. There were 10 (45%) SMA-like CVs, one (4.5%) NV-like HuCVs, two (9%) Sapporo-like HuCVs, and nine (41%) unidentified HuCVs. This fourth genogroup should be investigated further. HuCV 185/87/Korea and HuCV 1115/90/Korea, Sapporo-like CVs, were genetically distinct from previously characterized HuCVs and more closely related to known animal CVs. One of the animal CV-like strain, HuCV 185/87/Korea, showed nucleotide and amino acid homology of only 67% and 73% with the prototype Sapporo/82/Japan. Further characterization of animal and human CV genomes and studies of possible cross-transmission of CVs from animals to humans are likely to be beneficial in understanding the epidemiology of HuCVs.

  • PDF

Molecular Modeling of Small Molecules as BVDV RNA-Dependent RNA Polymerase Allosteric Inhibitors

  • Chai, Han-Ha;Lim, Dajeong;Chai, Hee-Yeoul;Jung, Eunkyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.837-850
    • /
    • 2013
  • Bovine viral diarrhea virus (BVDV), a major pathogen of cattle, is a well-characterized pestivirus which has been used as a good model virus for HCV. The RNA-dependent RNA polymerase (RdRp) plays a key role in the RNA replication process, thus it has been targeted for antivirus drugs. We employed two-dimensional quantitative structure-activity relationship (2D-QSAR) and molecular field analysis (MFA) to identify the molecular substructure requirements, and the particular characteristics resulted in increased inhibitory activity for the known series of compounds to act as effective BVDV inhibitors. The 2D-QSAR study provided the rationale concept for changes in the structure to have more potent analogs focused on the class of arylazoenamines, benzimidazoles, and acridine derivatives with an optimal subset of descriptors, which have significantly contributed to overall anti-BVDV activity. MFA represented the molecular patterns responsible for the actions of antiviral compound at their receptors. We conclude that the polarity and the polarizability of a molecule play a main role in the inhibitory activity of BVDV inhibitors in the QSAR modeling.

An early transcription checkpoint ; A dual role of capping enzyme in RNA polymerase II transcription

  • Cho Eun-Jung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2005년도 춘계학술대회
    • /
    • pp.5-14
    • /
    • 2005
  • Recently, data from several groups have raised the concept of 'checkpoint' in transcription. As capping of nascent RNA transcript is tightly coupled to RNA polymerase II transcription, we seek to obtain direct evidence that transcripiton checkpoint via capping enzyme functions in this early regulatory step. One of temperature sensitive (ts) alleles of ceg1, a guanylyltransferase subunit of the Saccharomyces cerevisiaecapping enzyme, showed 6-azauracil (6AU) sensitivity at the permissive growth temperature, which is a phenotype that is correlated with a transcription elongational defect. This ts allele, ceg1-63 also has an impaired ability to induce PUR5 in response to a 6AU treatment. However, this cellular and molecular defect is not due to the preferential degradation of the transcript attributed from a lack of guanylyltransferase activity. On the contrary, the data suggests that the guanylyltransferase subunit of the capping enzyme plays a role in transcription elongation. First, in addition to the 6AU sensitivity, ceg1-63is synthetically lethal with elongation defective mutations of the largest subunit of RNA polymerase II. Secondly, it exhibited a lower GAL1 mRNA turn-over after glucoseshut off. Third, it decreased the transcription read through a tandem array of promoter proximal pause sites in an orientation dependent manner. Interestingly, this mutant also showed lower pass through a pause site located further downstream of the promoter. Taken together, these results suggest that the capping enzyme plays the role of an early transcription checkpoint possibly in the step of the reversion of repression by stimulating polymerase to escape from the promoter proximal arrest once RNA becomes appropriately capped.

  • PDF

Detection of RNA Mycoviruses in Wild Strains of Lentinula edodes in Korea

  • Kim, Eunjin;Park, Mi-Jeong;Jang, Yeongseon;Ryoo, Rhim;Ka, Kang-Hyeon
    • 한국균학회지
    • /
    • 제49권3호
    • /
    • pp.285-294
    • /
    • 2021
  • In general, mycoviruses remain latent and rarely cause visible symptoms in fungal hosts; however, some viral infections have demonstrated abnormal mycelial growth and fruiting body development in commercial macrofungi, including Lentinula edodes. Compared to other cultivated mushrooms, L. edodes is more vulnerable to viral infections as it is still widely cultivated under near-natural conditions. In this study, we investigated whether Korean wild strains of L. edodes were infected by RNA mycoviruses that have previously been reported in other parts of the world (LeSV, LePV1, LeV-HKB, LeNSRV1, and LeNSRV2). Using specific primer sets that target the RNA-dependent RNA polymerase genes of each of the RNA mycovirus, reverse transcription-polymerase chain reaction (RT-PCR) was used to detect viral infection. Viral infection was detected in about 90% of the 112 wild strains that were collected in Korea between 1983 and 2020. Moreover, multiple infections with RNA mycoviruses were detected in strains that had normal fruiting bodies. This work contributes to our understanding of the distribution of RNA mycoviruses in Korea and the impact of multiple viral infections in a single strain of L. edodes.

Acibenzolar-S-Methyl(ASM)-Induced Resistance against Tobamoviruses Involves Induction of RNA-Dependent RNA Polymerase(RdRp) and Alternative Oxidase(AOX) Genes

  • Madhusudhan, Kallahally Nagendra;Deepak, Saligrama Adavigowda;Prakash, Harishchandra Sripathi;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.127-134
    • /
    • 2008
  • Tobamoviruses are the major viral pathogens of tomato and bell pepper. The preliminary results showed that Acibenzolar-Smethyl(ASM; S-methylbenzo(1,2,3) thiadiazole-7-carbothiate) pre-treatment to tomato and tobacco plants reduces the concentration of Tomato mosaic tobamovirus(ToMV) and Tobacco mosaic tobamovirus(TMV) in tomato and bell pepper seedlings, respectively. Pre-treatment of the indicator plant(Nicotiana glutinosa) with the ASM followed by challenge inoculation with tobamoviruses produced a reduced number and size of local lesions(67 and 79% protection over control to TMV and ToMV inoculation, respectively). In order to understand the mechanism of resistance the gene expression profiles of antiviral genes was examined. RT-PCR products showed higher expression of two viral resistance genes viz., alternative oxidase(AOX) and RNA dependent RNA polymerase(RdRp) in the upper leaves of the ASM-treated tomato plants challenge inoculation with ToMV. Further, the viral concentration was also quantified in the upper leaves by reverse transcription PCR using specific primer for movement protein of ToMV, as well as ELISA by using antisera against tobamoviruses. The results provided additional evidence that ASM pre-treatment reduced the viral movement to upper leaves. The results suggest that expressions of viral resistance genes in the host are the key component in the resistance against ToMV in the inducer-treated tomato plants.

  • PDF

Cosuppression and RNAi induced by Arabidopsis ortholog gene sequences in tobacco

  • Oka, Shin-Ichiro;Midorikawa, Kaoru;Kodama, Hiroaki
    • Plant Biotechnology Reports
    • /
    • 제4권3호
    • /
    • pp.185-192
    • /
    • 2010
  • The Arabidopsis ${\omega}$-3 fatty acid desaturase (AtFAD7) catalyzes the synthesis of trienoic fatty acids (TA). A transgenic tobacco line, T15, was produced by a sense AtFAD7 construct and showed a cosuppression-like phenotype, namely extremely low TA levels. The sequence similarity between AtFAD7 and a tobacco ortholog gene, NtFAD7, was moderate (about 69%) in the coding sequences. AtFAD7 siRNAs accumulated at a high level, and both AtFAD7 and NtFAD7 mRNAs are degraded in T15 plants. The low-TA phenotype in T15 was dependent on a tobacco RNA-dependent RNA polymerase6 (NtRDR6). We also produced tobacco RNAi plants targeting AtFAD7 gene sequences. The AtFAD7 siRNA level was trace, which was associated with a slight reduction in leaf TA level. Unexpectedly, this RNAi plant showed an increased NtFAD7 transcript level. To investigate the effect of translational inhibition on stability of the NtFAD7 mRNAs, leaves of the wild-type tobacco plants were treated with a translational inhibitor, cycloheximide. The level of NtFAD7 mRNAs significantly increased after cycloheximde treatment. These results suggest that the translational inhibition by low levels of AtFAD7 siRNAs or by cycloheximide increased stability of NtFAD7 mRNA. The degree of silencing by an RNAi construct targeting the AtFAD7 gene was increased by co-existence of the AtFAD7 transgene, where NtRDR6-dependent amplification of siRNAs occurred. These results indicate that NtRDR6 can emphasize silencing effects in both cosuppression and RNAi.

방사선 조사에 따른 U-937 세포의 Ceruloplasmin 유전자에서 mRNA 발현 변화 (Effect of Radiation on mRNA Expression of Ceruloplasmin Gene)

  • 오연경;임희영;김종수;윤충효;김인규;윤병수
    • Toxicological Research
    • /
    • 제20권1호
    • /
    • pp.31-36
    • /
    • 2004
  • Against environmental stress, ceruloplasmin which is a plasma protein, are believed to play central roles in antioxidant- or peroxidase-activity in blood stream to remove free radicals, which may be caused by exposing of $\gamma$-irradiation. In human U-937 cells exposed to $\gamma$-irradiation, the levels of mRNA in ceruloplasmin gene were measured on 0, 4, 12, 24 hr after exposing by using comparative RT-PCR (Reverse transcriptase-polymerase chain reaction) which was achieved to compare with house keeping genes such as $\beta$-actin and hprt. After $\gamma$-irradiation of 100 rads or 200 rads, the total quantities of RNA were increased as dose and time dependent manner. On the contrary, the variation of mRNA expression in ceruloplasmin was not found until 4 hr after irradiation. After 12 hr and 24 hr of irradiation, the levels of mRNA in ceruloplasmin were significantly increased as dose and time dependent manner than un-exposed cells.