• Title/Summary/Keyword: RNA-binding protein

Search Result 763, Processing Time 0.034 seconds

Plant RNA Virus-Host Interaction: Potato virus X as a model system

  • Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.14-14
    • /
    • 2003
  • Potato virus X (PVX), the type member of Potexvirus genus, is a flexuous rod-shaped virus containing a single-stranded (+) RNA. Infection by PVX produces genomic plus- and minus-strand RNAs and two major subgenomic RNAs (sgRNAs). To understand the mechanism for PVX replication, we are studying the cis- and/or trans-acting elements required for RNA replication. Previous studies have shown that the conserved sequences located upstream of two major sgRNAs, as well as elements in the 5' non-translated region (NTR) affect accumulation of genomic and sg RNAs. Complementarity between sequences at the 5' NTR and those located upstream of two major sgRNAs and the binding of host protein(s) to the 5' NTR have shown to be important for PVX RNA replication. The 5 NTR of PVX contains single-stranded AC-rich sequence and stem-loop structure. The potential role(s) of these cis-elements on virus replication, assembly, and their interaction with viral and host protein(s) during virus infection will be discussed based on the data obtained by in vitro binding, in vitro assembly, gel shift mobility assay, host gene expression profiling using various mutants at these regions.

  • PDF

Selection of Putative Iron-responsive Elements by Iron Regulatory Protein-2

  • Kim, Hae-Yeong
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.62-65
    • /
    • 1999
  • Iron regulatory proteins (IRPs) 1 and 2 bind with equally high affinity to specific RNA stem-loop sequences known as iron-responsive elements (IRE) which mediate the post-transcriptional regulation of many genes of iron metabolism. To study putative IRE-like sequences in RNA transcripts using the IRP-IRE interaction, Eight known genes from database were selected and the RNA binding activity of IRE-like sequences were compared to IRP-2. Among them, the IRE-like sequence in 3'-untranslational region (UTR) of divalent ration transporter-1 (DCT-1) shows a significant RNA binding affinity. This finding predicts that IRE consensus sequence present within 3'-UTR of DCT-1 might confer the regulation by IRP-2.

  • PDF

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

In Silico Study of miRNA Based Gene Regulation, Involved in Solid Cancer, by the Assistance of Argonaute Protein

  • Rath, Surya Narayan;Das, Debasrita;Konkimalla, V Badireenath;Pradhan, Sukanta Kumar
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.112-124
    • /
    • 2016
  • Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs). Argonaute (AGO) protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A) with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.

Characterization of the Gene for the Hemin-Binding Protein from Porphyromonas Gingivalis (Porphyromonas gingivalis에서의 Hemin 결합 단백질 유전자의 특성 연구)

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.663-676
    • /
    • 1999
  • Porphyromonas gingivalis, a Gram negative, anaerobic, asaccharolytic rod, is one of the most frequently implicated pathogens in human periodontal disease and has a requirement for hemin for growth. A 30 kDa (heated 24 kDa) hemin-binding protein whose expression is both hemin and iron regulated has recently been purified and characterized in this oral pathogen. This study has identified a hemin-binding P. gingivalis protein by expression of a P. gingivalis genomic library in Escherichia coli, a bacterium which does not require or transport exogenous hemin. A library of genomic DNA fragments from P. gingivalis was constructed in plasmid pUC18, transformed into Escherichia coli strain $DH5{\alpha}$ , and screened for recombinant clones with hemin-binding activity by plating onto hemin-containing agar. Of approximately 10,000 recombinant E. coli colonies screened on LB-amp-hemin agar, 10 exhibited a clearly pigmented phenotype. Each clone contained various insert DNA. The Hind III fragment transferred to the T7 RNA polymerase/promoter expression vector system produced a sligltly smaller (21 kDa) protein, a precursor form, immunoreactive to the antibody against the 24 kDa protein, suggesting that the cloned DNA fragment probably carried an entire gene for the 24 kDa hemin-binding protein.

  • PDF

Effects of FIS Protein on rnpB Transcription in Escherichia coli

  • Choi, Hyun-Sook;Kim, Kwang-sun;Park, Jeong Won;Jung, Young Hwan;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.239-245
    • /
    • 2005
  • Factor for inversion stimulation (FIS), the Escherichia coli protein, is a positive regulator of the transcription of genes that encode stable RNA species, such as rRNA and tRNA. Transcription of the rnpB gene encoding M1 RNA, the catalytic subunit of E. coli RNase P, rapidly declines under stringent conditions, as does that of other stable RNAs. There are multiple putative FIS binding sites upstream of the rnpB promoter. We tested whether FIS binds to these sites, and if so, how it affects rnpB transcription. In vitro binding assays revealed specific binding of FIS to multiple sites in the rnpB promoter region. Interestingly, FIS bound not only to the upstream region of the promoter, but also to the region from +4 to +18. FIS activated rnpB transcription in vitro, but the level of activation was much lower than that of the rrnB promoter for rRNA. We also examined the effects of FIS on rnpB transcription in vivo using isogenic $fis^+$ and $fis^-$ strains. rnpB transcription was higher in the $fis^-$ than the $fis^+$ cells during the transitions from lag to exponential phase, and from exponential to stationary phase.

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua;Lee, Yeunkum;Han, Kihoon
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.304-311
    • /
    • 2019
  • The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.

Backbone assignment of the anticodon binding domain of human Glycyl-tRNA synthetase

  • Mushtaq, Ameeq Ul;Cho, Hye Young;Byun, Youngjoo;Jeon, Young Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.50-55
    • /
    • 2016
  • Backbone $^1H$, $^{13}C$ and $^{15}N$ resonance assignments are presented for the anticodon binding domain (residues 557-674) of human glycyl-tRNA synthetase (GRS). Role of the anticodon binding domain (ABD) of GRS as an anticancer ligand has recently been reported and its role in other diseases like Charcot-Marie-Tooth (CMT) and polymyositis have increased its interest. NMR assignments were completed using the isotope [$^{13}C/^{15}N$]-enriched protein and chemical shifts based secondary structure analysis with TALOS+ demonstrate similar secondary structure as reported in X-ray structure PDB 2ZT8, except some C-terminal residues. NMR signals from the N-terminal residues 557 to 571 and 590 to 614 showed very weak or no signals exhibiting dynamics or conformational exchange in NMR timescale.

Characterization of the RNA binding protein-1 gene promoter of the silkworm silk grands (누에 견사선에서 분리한 RNA binding protein-1 유전자 프로모터 분석)

  • Choi, Kwang-Ho;Kim, Seong-Ryul;Kim, Sung-Wan;Goo, Tae-Won;Kang, Seok-Woo;Park, Seoung-Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • We isolated highly-expressed genes in the posterior silk glands of silkworm on a previously study, which one of these was identified as RNA binding protein-1 homologue (RBP-1) gene. In this study, we investigated gene expressional characteristics of the RBP-1 depending on silkworm development stages and several tissues of the larvae, respectively. Northern blot hybridization analysis showed that the RBP-1 gene was expressed high in larval and pupal periods, and highly expressed than endogenous internal control gene (BmA3) on all tested larval tissues. In addition, we isolated and analyzed a phage DNA having 1,660 bp-long promoter region of the RBP-1 gene from a genomic DNA library. To study the RBP-1 gene promoter activity, RBP-1 (-740/+ 30) was amplified by PCR and subcloned into a pGL3 basic vector to generate pGL-RBP1. A luciferase report vector carrying RBP-1 gene promoter (770 bp) was tested by luciferase assay in Sf9 cells. In the result, the RBP-1 gene promoter was more efficient than constitutive promoter (BmA3) by approximately ten percent.